Svensk Djupstabilisering

Swedish Deep Stabilization Research Centre

Report 9 The Function of Different Binding
Agents 1n Deep Stabilization

Marten Janz
Sven-Erik Johansson

English
Translation
July 2002




Swedish Deep Stabilization Research Centre

The Swedish Deep Stabilization Research Centre coordinates research and development activities in
deep stabilization of soft soils with lime-cement columns. A joint research programme based on the
needs stated by the authorities and the industry is being conducted during the period 1996 — 2004.
Members of the Centre include authorities, lime and cement manufacturers, contractors, consultants,
research institutes and universities.

The work of the Swedish Deep Stabilization Research Centre is financed by its members and by
research grants.

The Swedish Deep Stabilization Research Centre is located at the Swedish Geotechnical Institute and
has a Steering Committee with representatives choosen from among its members.

Further information on the Swedish Deep Stabilization Research Centre can be obtained from the
Project Manager, Mr G Holm, tel: +46 13 20 18 61, +46 70 521 09 39, fax: +46 13 20 19 14 or
e-mail: goran.holm@swedgeo.se, http://www.swedgeo.se/sd.htm.



. Svensk Djupstabilisering

"_ Swedish Deep Stabilization Research Centre

Report 9

The Function of Different Binding
Agents 1n Deep Stabilization

Marten Janz
Sven-Erik Johansson

_ eep M'XTn:g\;\Q\\

/

T AN

// \00’64 R \/‘0*9/\ \
(N nlTE
N ) )
\\\\ \ / \\L // ) /

English Translation July 2002



Report | Swedish Deep Stabilization Research Centre
c/o Swedish Geotechnical Institute
SE-581 93 Linkoping

Phone: +46 13 20 18 62
Fax: 013-20 19 I3
E-mail: birgitta.sahlin@swedgeo.se

ISSN | 1402-2036
ISRN | SD-R--01/9--SE

Swedish Deep Stabilization Research Centre, Report 9



Foreword — English Translation

Translation of this document was made possible through collaborative effort of Swedish Deep Sta-
bilization Research Centre and the US National Deep Mixing (NDM) program. The mission of both
organizations is to facilitate advancement and implementation of deep mixing technology through
partnered research and dissemination of international experience.

The Swedish Deep Stabilization Research Center with its headquarter at the Swedish Geotechnical
Institute (SGI) coordinates research primarily on dry mix methods. An international conference on
“dry mix methods for deep soil stabilization” was held in Stockholm in 1999. The findings from
research and state-of-the practice in Europe, particularly on stabilization of organic soil, were pre-
sented and published in the proceedings. SGI is also a partner of EuroSoilStab, the R&D project
focusing on organic soils and infrastructure applications.

The National Deep Mixing program coordinates a program of deep mixing research in the US. The
international workshop on “Deep mixing technology for infrastructure development” was held in
Oakland, California in 2001. A forum of users and experts from industry, government and academia
examined the current practice and research needs; and identified the challenges ahead for imple-

mentation of deep mixing technology.

We hope dissemination of international experience serves as a step toward our better understanding
and promotion of this innovative technology in the construction industry.

July 2002

Goran Holm, Linkoping, Sweden Ali Porbaha, California, USA
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Foreword

In autumn 1999 the Swedish Deep Stabilization Research Centre (SD) ran a course on the chemis-
try of soils and binders in the hope of contributing to a wider knowledge of the basic chemistry of
deep stabilization. The present documents the course content as well as providing a general theo-
retical account of the function of different binding agents in deep stabilization. SD is conducting an
extensive research programme on the properties of stabilized soils, focussing among other things on
relevant parameters, the effectiveness of different binding agents in typical Swedish loose soils, and
environmental impacts. The findings of this programme will be published by SD in later reports and
the function of binding agents will be further discussed in that context.

The authors of this report are Marten Janz of the Swedish Cement and Concrete Research Institute
(formerly of the Department of Building Materials at the Lund Institute of Technology) and Sven-
Erik Johansson of Cementa AB.

Linkdping, June 2001

Goran Holm
Project Manager, SD
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Summary

A knowledge of the chemical reactions that give binders their strength is important in order to un-
derstand why a given binder may provide good stabilization in some soils while performing poorly
in others. The binders in common use today are cement and lime. Blast furnace slags and fly ashes
have also been used to some extent. These binders have somewhat different reactions and require
different conditions in order to perform, but their reaction products are closely similar. Since ce-
mentitious materials have been used for a very long time, the properties of their reaction products
are well-known and studied.

In clay and silt a mix of cement and lime has been found often to give stabilization with high
strength and very good interaction with the surrounding ground. The cement reacts with the water
in the soil providing a rapid strength gain. The lime too reacts with water forming calcium hydrox-
ide. The lime reaction does not result in any chemical strength gain but does have a temporary posi-
tive effect on stability due to the large amounts of water consumed. The permanent strength gains
from lime as a stabilizer are due to the products of a slow, secondary reaction between the calcium
hydroxide and pozzolanic minerals in the soil. In dispersed clays with low plasticity calcium hy-
droxide can also provide a stabilizing effect by ion exchange involving calcium ions and positive
ions present on the surface of the clay particles.

If the soil has pozzolanic properties the use of latent hydraulic and pozzolanic additives is inappro-
priate, as these additives will consume Ca(OH), which would otherwise have reacted with the poz-
zolanic minerals in the soil. The pozzolanic properties of the soil will thus not be fully utilized and
the weight of reaction products that can form is smaller.

In soils with high organic content the best results are obtained with cement or a combination of
cement with latent hydraulic or pozzolanic additives. The reason why lime is ineffective is that the
humic acids frequently present in organic soils inhibit the pozzolanic reactions between calcium
hydroxide and pozzolanic minerals. In any case, these soils usually contain only small amounts of
pozzolanic minerals for the calcium hydroxide to react with. Humic acids also affect the cementi-
tious reaction, slowing the reaction rate.

Provided the selected stabilizer has the desired function in the soil at hand, the outcome is deter-
mined by the ratio of the water content of the ground to the quantity of binder added, i.e. the water/
total-cementitious ratio wtcr. Thus a soil with high water content requires more binder than does a
dryer soil to achieve the same water/total-cementitious ratio and the same stabilization effective-
ness. This is particularly true of cement-based binders. If lime is used as a binder, the strength in-
creases directly as the quantity of lime as long as there are still pozzolanic minerals present in the
soil. If all the pozzolana in the soil is consumed by reaction with Ca(OH),, further quantities of
lime will not provide any further gain in strength.
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In general one may say that the reactivity of a binder is largely determined by its fineness, which is
normally expressed as the specific surface. The higher the specific surface the more rapidly the
material reacts. In the case of latent hydraulic or pozzolanic additives vitreosity is also of great im-
portance for reactivity. If the material is vitreous (amorphous) it is highly reactive, while crystalline
additives can be completely inert.

Temperature is of the greatest importance for the reaction rate and the final outcome. Pozzolanic
reactions in particularly are negatively impacted by low temperature. If a technical /forundersdkn-
ing/ is carried out under laboratory conditions at 20 °C there is a risk that pozzolanic reactions will
contribute far more to the strength gain in the test than they will in the field. Thus laboratory tests
can give misleading results. Hence it is most important that technical /férundersdkningar/ are car-
ried out at the same temperature that is expected to exist in the soil to be stabilized.

Another factor that can give rise to misleading results in laboratory tests is the mixing method. Ho-
mogenization and mixing in laboratory conditions tends to be considerably more efficient than in
the field. Attention should be paid to this fact when interpreting the results of /forundersokningar/.

Industrial residues, such as ash from heating plants and factories, can be reactive and hence usable
for soil stabilization. It can be economically attractive to use such residues to replace a portion of
other binders if the stabilization site is close to the source of the ash. Longer haulage distances gen-
erally make this option unprofitable. With regard to environmental impacts it is important to under-
stand that all products used will have an impact on their surroundings depending on their composi-
tion. Residues can be of highly variable quality and therefore their chemical composition and leach-
ability should always be tested. The use of a residue is justifiable if the impact of alternative uses or
landfilling would be more severe.
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1. Introduction

PURPOSE

The appropriate choice of binder for deep stabilization depends on an understanding of the chemi-
cal and physical reactions which give the stabilized soil its enhanced strength. The purpose of the
present report is to offer an account of these reactions in order to enable an informed choice of
binder to be made based on its stabilizing effect in the soil at hand.

BACKGROUND

Since the 1970s Swedish engineers have used deep soil mixing to stabilize loose clays and silts,
primarily for road and railway construction but also for light building foundations, trenches for bur-
ied services, slope stabilization etc. Originally lime was the only binder used, but cement has been
widely used since the mid 1980s. It has been found that considerably higher strength is achieved
with cement, either alone or mixed with lime (Ahnberg et al. 1995). The introduction of cement has
made it possible to stabilize “problem soils” with high organic contents and high water:soil ratios.
Trials have also been carried out in which a portion of the binder is replaced with industrial resi-
dues. Axelsson et al. (2000), for example, showed that ground granulated blast furnace slag has a
positive effect in the stabilization of peat.

Deep stabilization is often economically attractive as well as offering environmental benefits, as the
alternative may be removal of the loose soil stratum, entailing a major haulage effort. The haulage
effort required to bring the binder to the site depends on the distance to the nearest depot.

If the opportunity exists to use ash, slags, or another industrial residue, both environmental and
economic gains may be achievable, as the alternative disposal method for such residues in many
cases is to dump them at a landfill site. However, the use of residues will only bring an environ-
mental gain if alternative disposal would have a more severe environmental impact than stabiliza-
tion. It is essential to ensure that the binder does not contain heavy metals or other hazardous sub-
stances that can leach out. The use of a residue will normally only be economically justifiable if the
stabilization site is close to the source of the residue. An essential condition in order for a residue to
be considered at all is that it possesses the desired stabilizing function. Residues must always be
tested in the soil to be stabilized.
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2. Cementitious, calcareous and
pozzolanic reactions

Portland cement, lime, and latent hydraulic or pozzolanic materials react with water under certain
conditions forming similar reaction products with high strength. Cement yields high-strength reac-
tion products immediately on reacting with water. Lime reacts with water to form calcium hydrox-
ide, which has no bearing capacity itself but which forms high-strength products in a secondary
reaction with certain pozzolanic soils or additives. Latent hydraulic materials have to be activated
with e.g. calcium hydroxide in order to react, while pozzolanic materials require the availability of
calcium hydroxide throughout the reaction process. The reactivity of cement, latent hydraulic and
pozzolanic materials depends among other things on the ratio of lime to silica, CaO:SiO,. The larg-
er this ratio is, the more hydraulic is the material. Table 2.1 summarises the strength-enhancing
reactions of cement, lime, granulated blast furnace slag, fly ash from power and heating plants
fuelled with pulverized coal, and silica fume. It will be apparent that a mix of cement and lime
gives a rapid initial strength gain from the cementitious reaction, followed by a slow pozzolanic
reaction.

Table 2.1  Strength-enhancing reactions.

Binder Reaction Coreagents Time scale

Cement Hydraulic Water Days

Lime Puzzolanic" Water + puzzolanic soil or Months
puzzolanic additive

Granulated blast Latent hydraulic Water + Ca(OH), from e.g. Weeks

furnace slag cement or lime

Fly ash? and Puzzolanic Water + Ca(OH), from e.g. Months

silica fume cement or lime

' An initial hydraulic reaction forms Ca(OH)z, which then participates in a pozzolanic reaction.
The strength gain is due to the products of the secondary pozzolanic reaction.

2 Fly ash from power and heating plants fuelled with pulverized coal.

A feature common to cement, lime, latent hydraulic and pozzolanic materials is that their reaction
rate is determined to a large degree by the surface area of the material that is exposed to water. If
the particle size is small, a correspondingly larger surface area is exposed. A measure of fineness is
the specific surface [m?*/kg]. The higher the specific surface, the more rapid the reaction rate.

The products of cementitious, calcareous and pozzolanic reactions are similar, consisting mainly of
calcium and siliceous compounds with smaller amounts of aluminium, iron and other elements.
Since materials of the cement type have been used since ancient times, the properties of their reac-
tion products are well-known and studied.
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21 PORTLAND CEMENT

Portland cement is a hydraulic binding agent, i.e. it reacts with water forming a hard mass. It is
manufactured by mixing Portland clinker with approximately 5 % of gypsum and grinding it to a
particle size of 1 — 100 pm and a specific surface of ~300 — 550 m?*/kg.

Various additives may be included in the mix during grinding to modify the properties of the ce-
ment. Swedish Standard SS 113 4201 divides cements into five classes known as cement types [-V.
Cement type I is a pure Portland cement containing no additives, while cement type II/A-LL is a
modified limestone filler (CaCO,). The commonest type I cements in Sweden are SH-cement and
Anléggningscement, while the type Il cement sold today, containing ~15 % limestone filler, is Byg-
gcement. Byggcement has superseded the Std-cement (“standard cement”) that was formerly sold.
Std-cement was a pure Portland cement, i.e. a type I cement. Byggcement and Std cement are simi-
lar in their strength development.

The usual raw materials for the manufacture of Portland clinker are clay and limestone. Other mate-
rials of similar chemical composition can be used. After grinding and mixing, the raw material is
calcined in a rotary kiln at ~1450 °C. The heat drives off carbon dioxide and the material is sin-
tered. After leaving the kiln the material is cooled rapidly. The pelletized product is known as Port-
land clinker.

A typical chemical composition of Portland cement appears in Table 2.2. While the chemical com-
position is expressed in terms of oxides, the substances are actually present in the form of com-
pounds known as clinker minerals. In addition to the components shown in the table, smaller
amounts of TiO,, MnO,, P,O, and CI" may occur.

Table 2.2 Typical composition of Portland cement. (Johansson 1994A)

Oxide Ca0 Sio, Al,O, Fe, 0, MgO SO, K,0 Na,O0
Conteent [%] 60-70 17-25 2-8 0-6 0-6 1-4 02-15 0,2-15

Mixing cement with water initiates a chemical process (hydration) which forms a hard cement
paste. When a cement particle undergoes hydration an extremely fine-pored cement gel forms
around the particle. Fig. 2.1 shows schematically the changes in the structure of the cement paste as
five cement particles react with water. Fig. 2.2 is a photomicrograph of the gel structure of cement
paste. The similarity with Fig. 2.1 is striking. The reaction products constituting the cement gel
include CSH gel, ettringite, and monosulfate, described in detail below. Since the cement gel is
porous and contains chemically combined water (water of crystallization), its volume will be great-
er than that of cement particle prior to reaction. Thus as the reaction between the cement and the
water proceeds, the voids between the cement particles will gradually be filled with cement gel. At
the same time the cement paste grows denser and stronger.

Different Binding Agents in Deep Stabilization I



Unhydrated

cement particles
Fig. 2.1
Cement gel Structure of cement paste:
a) Immediately after mixing
V' b) After a few minutes
% c) Upon setting
Capillary pores d) After some months
and cavities (Fagerlund 1994)
Fig. 2.2
e . ESEM photograph of cement gel
Det WD Exp { L
GSE10.3 0 60mmundersuface containing CSH crystals.

b S

Photo: Finger Institute, Weimar University.

The strength of the cement paste depends largely on its porosity. Wide separations between the
particles result in higher porosity and lower strength. A measure of the cement content, and hence
of the separation between the particles, is given by the water:cement ratio wcer.

wer :E (1)

where W is the weight of mixing water [kg] and C the weight of cement [kg]. A high wer implies
wide separations between the cement particles, which in turn means high porosity and low strength.
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The water:cement ratio is one of the most important quality parameters of cement when used as a
binding agent. An example of the relation between quality and wer may be seen in Fig. 2.3, which
shows how the strength of a concrete increases as wcr decreases.

curve refers to concrete (cube
samples), but similar relations
apply in soil stabilization.
(Ysberg 1979)
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As we have seen, it is the chemical reactions that occur as the cement hydrates that reduce the po-
rosity resulting in a gain in strength. In cement chemistry it is customary to use an abbreviated nota-
tion for the oxide constituents of cement: CaO = C; SiO, = S; Al,O, = A; Fe, 0, =F; SO, = S';
MgO =M och H,0O = H. Table 2.3 shows the most important clinker minerals in Portland cement..

Table 2.3 The most important clinker minerals.

Name Chemical formula) Abbreviation
Tricalcium silicate 3Ca0-Sio, C;S
Dicalcium silicate 2Ca0-Sio, C,S
Trikalcium aluminate 3Ca0-ALO, C,A
Tetracalcium aluminate ferrite (Ferrit) 4Ca0-Al,0,Fe,0, C,AF2

Y Although e.g. tricalcium silicate is written as 3Ca0-SiO,, this does not imply that the oxides are present individually.
The true chemical formula is Ca,SiO,.

2 Tetracalcium aluminate ferrite ranges between C.A,F and C AF,, the average composition being close to C,AF.

The clinker minerals C,S, C,S och C;A do not occur pure in Portland clinker: some impurities are
always present. The impure form of C,S is called alite, of C,S belite, and of C;A aluminate. The
hydration of C;S and C,S, of C;A and of C,AF is described in sections 2.1.1 through 2.1.3 respec-
tively.

Different Binding Agents in Deep Stabilization 13



In a Portland cement containing all the clinker minerals, the reactions described in sections 2.1.1
through 2.1.3 will occur concurrently. Fig. 2.4 illustrates the reactions of a Portland cement. The
first peak (1) is due to the release of soluble substances from the cement, the first silicate reactions
(Equations 2 and 3), and the formation of ettringite (Equation 4). These reactions take place in the
first few minutes.

n
o
%)

-

[3,)
\
w

AN

Heat, W/kg

TS
0,5
0
0 10 20 30 40 50

Time, h

Fig. 2.4  Heat exchange for a typical Portland cement at 20 °C.
(Taylor 1990)

When the cement begins to set a second evolution of heat occurs, reaching a maximum after ~10 —
20 hours (2). This is primarily due to the aluminate and silicate reactions described in sections 2.1.1
and 2.1.2. After this peak has passed, it becomes more difficult for the water to penetrate into the
cement particles, and the reaction and heat evolution subside (the process becomes diffusion-con-
trolled). At (3) further formation of ettringite occurs and at (4) ettringite is converted to monosul-
fate, see Equation 5. According to Taylor (1990) the total heat evolution of a normal Portland ce-
ment is approximately 450 kJ/kg.

About half of the cement has normally reacted after 3 days, 60 % after seven days and 90 % after
three months. The reaction rate, and hence the strength gain, is mainly controlled by the ratio of
C;S to C,S (C,S gives a rapid-hardening cement while C,S gives a cement that reacts slowly), the
fineness of the grind, and the temperature.

2.1.1 Hydration of calcium silicates (C,S, C,S)

When C,S is mixed with water, calcium ions are rapidly released into solution and hydroxide ions
form, causing the pH to rise above 12 within a few minutes. When the concentration of calcium and
hydroxide ions reaches a certain threshold calcium hydroxide crystallizes out of solution, while a
layer of calcium silicate hydrate (CSH) forms on the surface of the C,S particles. As CSH layer
grows it forms a barrier which the water must penetrate in order to reach the unhydrated C,S and
through which ions must diffuse out. The hydration reaction thus becomes diffusion-controlled and
approaches 100% asymptotically. Initially the hydration rate is temperature-dependent, but the tem-
perature dependency is less pronounced after the reaction becomes diffusion-controlled.
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C,S undergoes hydration in a similar way but more slowly due to its lower reactivity, see Fig. 2.5.
The figure also shows that it is the reaction products of C;S and C,S that result in the highest
strength.

10,000 vy

8000

6000

Compressive Strength (psi)

4000
Fig. 2.5
2000 C3A+CSH, Strength curves of the
/’/ pure clinker minerals.
o = | C4AF4CSH (Young 1985)
0 20 40 60 80 100
Time (days)
The reactions of C;S and C,S may be written:
2C,S+7H - C,S,H, +3CH )
2C,S+5H - C,S,H, +CH 3)

where C,S,H, is the CSH gel. CSH has the highest strength, while CH makes only a minor contri-
bution.

According to Bogue (1955) the heat evolution on complete hydration is 500 kJ/kg for C,S and
260 kJ/kg for C,S.

2.1.2 Hydration of tricalcium aluminate (C,A)

If cement contains no gypsum, and hence no sulfate, the reaction of C;A with water gives calcium
aluminate hydrate (CAH) immediately. The cement then sets at once. Gypsum is added to moderate
the reaction in order to delay setting. In the presence of gypsum (CS'H,) the C,A reacts with water
and gypsum to form ettringite (C,AS';H,,).

C,A +3CSH, +26H - C,AS,H,, (4)

Different Binding Agents in Deep Stabilization 15



A small fraction of the C;A reacts within a few minutes, covering the cement particle with ettringite
which thus forms a diffusion barrier. The reaction now becomes diffusion-controlled and proceeds
slowly. Ettringite is only stable in the presence of a large excess of sulfate, which is generally the
case during the first 24 hours. When the concentration of sulfate falls the ettringite is converted into
monosulfate. The diffusion barrier breaks down and the reaction speeds up again:

2C,A +C(AS,H,, +4H - 3C,ASH,, (5)

According to Bogue (1955), the heat evolution on complete hydration of C;A is 870 klJ/kg.

If the monosulfate is later exposed to a new source of sulfate ions, ettringite can re-form:
C,ASH,, +2CSH, +16H - C,AS,H,, (6)

Since ettringite is considerably less dense than monosulfate, ettringite re-formation is accompanied
by swelling. Thus if ettringite forms in concrete that has hardened there is a risk of cracking. For
this reason, sulfate-resisting cement with low C;A content (Anldggningscement) is used for con-
struction in environments with external sulfate sources. It is doubtful whether delayed ettringite
formation causes problems in deep stabilization as the stabilized soil is probably sufficiently porous
to allow ettringite to form without compromising stabilization performance.

2.1.3 Hydration of ferrite (C,AF)

The hydration of ferrite is similar to that of C;A but proceeds more slowly with less evolution of
heat (420 kJ/kg according to Bogue 1955). In the presence of gypsum, sulfate-rich compounds of
the ettringite type form first:

3C,AF +12CSH, +110H - 4| C (AF)S;H,, | +2(AF)H, (7)
As the sulfate content falls, compounds poorer in sulfate form:

3C,AF +2| Co(AF)S;H,, | +14H - 6] C, (AF)SH,, | +2(AF)H, (8)

2.2 LIME

The lime used for deep stabilization is made from limestone, which mainly consists of calcium car-
bonate (CaCO,). The limestone is crushed and calcined (heated) at somewhat over 1000 °C, which
drives off carbon dioxide. The product is mainly calcium oxide (CaO), known as burnt lime or
quicklime. The calcination reaction is described by Equation 9.

CaCO, + heat - CaO + CO, )
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Burnt lime is characterized by its degree of calcination and by particle size. The degree of calcina-
tion indicates how much of the carbon dioxide (CO,) has been driven out of the limestone. In pro-
duction control it is usually measured as residual CO, (Pihl and Kuusipuro 1997). A distinction is
made between hard-burnt and soft-burnt lime, but these terms are relative and have no established
definitions. Hard-burnt lime has higher density and hence lower porosity and specific surface, and
is therefore less reactive than soft-burnt lime. The reactivity of lime also depends on its particle
size: more finely ground lime reacts more rapidly.

The reactivity of lime is measured by the heat evolved when 150 g of burnt lime is mixed with
600 mL of water (SS 13 40 03). The faster and higher the temperature rise, the more reactive is the
lime. Fig. 2.6 shows examples of hydration curves for different limes.
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Fig. 2.6 Examples of hydration curves. (Ahnberg and Pihl 1997)

A typical lime composition appears in Table 2.4. Besides the components shown, there may also be
small quantities of TiO,, P, S, CI" and CO, and other species.

When burnt lime is mixed with water, slaked lime or hydrated lime, Ca(OH),, is formed.
CaO +H,0 - Ca(OH), (10)

The hydration of lime generates a great deal of heat. According to Boynton (1980) the total heat
evolved is 1163 kJ/kg. The reaction also results in the pH increasing to ~12.5, which is a condition
for the secondary pozzolanic reactions. During soil stabilization, hydration dewaters the soil giving
a rapid gain in stability. This stability gain is lost if the soil rehydrates. However, rehydration usual-
ly takes place slowly enough for the soil to have been stabilized by other reactions in the meantime.
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Table 2.4 Example of composition of burnt lime.
(Product specification, Nordkalk QL 0.0.1 LA, August 1998)

Component Total CaO CaO-aktiv Sio, Al,O, Fe,0, Mg0  K,O Na,0
Content [%)] 94 90 1.5 0.8 04 1.7 01 005

The slaked lime does not set and hence gives no strength gain. The gain in strength from soil stabi-
lization with lime is dependent on secondary pozzolanic reactions with additives or with the sur-
rounding soil:

Ca(OH), + pozzolana + H,0 - CSH (CASH) (11)

or on ion exchange, see section 3.2. CASH, or calcium aluminate silicate hydrate, is very similar to
CSH but also contains aluminium.

However, if slaked lime (Ca(OH),) comes in contact with the air it reacts with carbon dioxide and
calcium carbonate re-forms. This gives a strength gain independent of pozzolanic reactions and is
the reaction responsible for the strength of e.g. mortars and renders.

Ca(OH), +CO, — CaCO, +H,0 (12)

Burnt lime is sensitive to atmospheric moisture and carbon dioxide. The probable reason why the
hydration curve labelled P in Fig. 2.6 is lower than the others is that the lime was affected by con-
tact with air. Atmospheric moisture causes some of the lime to hydrate to Ca(OH),, see Equa-
tion 10. The slaked lime may then react with carbon dioxide to form calcium carbonate, see Equa-
tion 12. This means that special care must be taken during the transport and storage of lime. Ahn-
berg and Pihl (1997) showed that lime stored in contact with the air deteriorates appreciably, see
Fig. 2.7. After one week there is already a substantial loss of reactivity.
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Fig. 2.7 Examples of hydration curves of limes stored in half-filled containers, covered and
uncovered. (Ahnberg and Pihl 1997)

2.3 LATENT HYDRAULIC AND POZZOLANIC ADDITIVES

As we have mentioned, we distinguish between hydraulic, latent hydraulic and pozzolanic materi-
als. Which group a material is assigned to depends on the ratio of lime to silica in its composition.
The higher the Ca0O:SiO, ratio the more hydraulic the material is, see Table 2.5. Hydraulic materi-
als, such as Portland cement, react spontaneously with water and were dealt with above.

Latent hydraulic materials contain lime but require activation before it can react with water. The
commonest latent hydraulic binder is ground granulated blast furnace slug, which is a processed
residual product from iron smelting.

Table 2.5 Properties of hydraulic, latent hydraulic and pozzolanic materials.
(Fagerlund 1983)

Material Grain size Structure CaO SiO, content Specific surface
[um] Sio, [%] [m?kg]

Portland cement

(hydraulic) 1-100 Crystalline ~3 ~20 300-500

Ground granulated 1-100 Vitreous = &185 300-500

blast furnace slag (amorphous)

(latent hydraulic)

Fly ash 1-100 Vitreous ~0 50-60 300-500

(puzzolanskt) (amorphous)

Silica fume 0.01-1 Vitreous =() 85-95 20 000

(puzzolanic) (amorphous)
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Pozzolanic materials or pozzolanas contain practically no lime but have high silica content. They
therefore require lime from an external source before they can react. Two commonly used poz-
zolanas are fly ash, a residue from pulverized coal fuelled power plants and heating plants, and sili-
ca fume, a residue from the manufacture of metallic silicon or ferrosilicon. The word pozzolana
comes from the town of Pozzuoli on the Bay of Naples, where the Romans found a siliceous vol-
canic ash which they mixed with lime to make a hydraulic binder (Rutle 1958).

The reactivity of latent hydraulic and pozzolanic materials depends on their fineness and their vitre-
osity. Fineness is normally expressed as specific surface [m?/kg]. The essential difference between
silica fume and fly ash is their fineness: silica fume is extremely finely divided with a specific sur-
face of ~20,000 m?/kg, while fly ash has a specific surface of ~300 — 500 m?/kg. Due to its extreme
fineness, silica fume contributes far more to strength gain than does fly ash. Fig. 2.8 illustrates the
effect of fineness on strength gain. The figure shows strength curves for a slag concrete in which a
large portion of the Portland cement has been replaced with blast furnace cement, but similar rela-
tions between fineness and strength exist for all binders.
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For latent hydraulic and pozzolanic additives vitreosity is also an important parameter. A vitreous
(amorphous) material has higher reactivity than a crystalline material, which can be completely
inert. High vitreosity is achieved by rapid cooling from the molten state.

As in the case of pure cement paste (see above), the strength of the paste formed by additives de-
pends largely on its porosity, which in turn depends on the separation between the suspended parti-
cles. A measure of the additive content, and hence of the particle separation, is given by the water/
total-cementitious ratio wtcr (compare with the water/cement ratio in Equation 1):

_w
wtcr —m (13)
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where W is the weight of mixing water, C the weight of cement and D the weight of additive [kg].
The lower the wtcr the denser the paste and the higher its strength.

2.3.1 Granulated blast furnace slag

Granulated blast furnace slag is a residue from pig iron manufacture in blast furnaces. The reactivi-
ty of the slag depends on how rapidly it is cooled after leaving the furnace. Rapid cooling gives a
vitreous, highly reactive slag, while slow cooling gives a crystalline, inert slag which is unsuitable
as an additive for deep stabilization. Before a slag is used as an additive its reactivity should there-
fore be measured or verified with the manufacturer. According to BS 6699 the vitreosity of a reac-
tive slag must be greater than 85 %.

The reactivity of a slag is also influenced by its fineness. Slag is normally ground to approximately
the same fineness as cement. Quality requirement for fineness may be found in BS 6699, which
calls for a specific surface exceeding 275 m?/kg, and in ASTM C 989, which permits a maximum of
20 % oversize on the 45 mm screen.

Besides CaO and SiO, granulated blast furnace slag contains appreciable quantities of Al,O, and
MgO and smaller amounts of other minerals. Table 2.6 shows an example of the mineral content of
blast furnace slag.

Table 2.6 Example of composition of granulated blast furnace slag.
(Product sheet for Merit 5000, SSAB Merox AB)

Mineral Ca0 S0, A0, Mg S FeO  Na0O KO
Content[%] 36 36 10 13 1 04 04 06

Before granulated blast furnace slag will react it must be activated, e.g. with Ca(OH),. The reaction
products of lime and Portland cement contain Ca(OH),, making these products excellent activators
for slag. Activation by Ca(OH), from lime or cement gives a latent hydraulic reaction. After the
slag is activated the reaction takes place largely spontaneously with its own lime content. It is also
possible to activate slag by means of alkalis and sulfates, but these have different reactions and
yield reaction products with different properties and are therefore discussed separately in sec-

tion 7.2.

The main strength-enhancing reaction product is a CSH gel of the same type as that formed by
Portland cement, but its CaO/SiO, ratio is lower and the gel contains more aluminium oxide and
magnesium oxide. The aluminium oxides react with lime and gypsum or with calcium hydroxide,
forming crystals resembling ettringite and monosulfate (Johansson 1994B).

The reaction is exothermic like the cementitious reaction, but is slower and therefore gives a slower

strength gain and lower heat evolution than with cement. However, the long-term strength from
slag admixture can be higher.

Different Binding Agents in Deep Stabilization 21



The reaction rate is very temperature-dependent. If the temperature increases the reaction rate rises,
giving accelerated strength gain. Conversely the strength gain is slower at low temperatures. A
method of raising the temperature and thereby hastening the strength gain is to mix cement and
possibly burnt lime with the slag.

2.3.2 Fly ash from pulverized coal fuelled power and heating plants

Fly ash from pulverized coal fuelled power and heating plants is a filter dust that is separated from
flue gases. The properties of fly ash vary widely with the combustion process and the coal type.
Black coal gives a fly ash with lower CaO content than brown coal, but different black coals and
brown coals also vary widely. Thus a change in the coal burnt by a power station can result in a fly
ash with entirely different properties. At some power/heating plants the combustion and filtration
processes are such that the ash totally lacks pozzolanic properties and is hence unsuited for use as a
stabilizing agent. High combustion temperatures (1500 — 1700 °C) and rapid cooling give a fly ash
with a more rounded particle shape and high vitreous content which is suitable as a stabilizer, see
Fig. 2.9. A quality assessment must therefore be made prior to using a batch of fly ash for deep
stabilization.

Fig. 2.9 Examples of fly ashes from different combustion processes. The
ash on the left is a high-quality ash with rounded, intact particles.
The ash on the right has large, angular, porous particles which
absorb water. (Johansson 1994B)

The essential properties of a fly ash are its fineness, vitreous content and loss on ignition (a measure
of the amount of uncombusted carbon). The vitreous content is normally between 60 % and 90 %
but should be as high as possible. Crystalline ashes are completely inert. BBK 94 states a number of
requirements for fly ash for use in concrete manufacture. The requirements for deep stabilization
need not be so exacting as those prescribed by BBK 94 for concrete structures.

As mentioned above, the composition of fly ash can vary widely. Table 2.7 shows an example of
chemical composition. In addition to the components shown, some fifty metals are present in trace
concentrations up to 0.05 %. Some fly ashes may also contain radioactive substances.

In order for a pozzolana such as fly ash to react with water at all an external source of lime is neces-

sary, e.g. in the form of Portland cement or burnt lime. When cement or burnt lime react with water
they form calcium hydroxide, Ca(OH),, which in turn may form either a strength-enhancing CSH

22 Swedish Deep Stabilization Research Centre, Report 9



Table 2.7 Example of chemical composition of a fly ash (Johansson 1994B).

Mineral sio, AL, Fe,0, CaO  Mg0 SO, KO  Nao
Content [%] 40-55  20-30 510 37 1-4 04-2 2 1

gel of the same type as Portland cement but with a lower CaO/Si0O, ratio, or calcium aluminate sili-
cate hydrate (CASH), which is closely similar to CSH but contains aluminium. In this reaction

100 g of pozzolan can form a maximum of 150 g of CSH gel or CASH gel. The pH of the pore wa-
ter falls because hydroxide ions (OH") are consumed.

The reaction with cement can be briefly described as follows:

Cement + H,O - CSH + Ca(OH), (14)
Ca(OH), + pozzolana + H,0 - CSH (CASH)

and the reaction with burnt lime (CaO) as:

CaO + H,0 - Ca(OH), (15)
Ca(OH), + pozzolana + H,0 — CSH (CASH)

The pozzolanic reaction is slow and is slowed further by the formation of a shell of CSH gel around
the particles of fly ash. The reaction rate and strength gain are proportional to the consumption of
Ca(OH),, as illustrated by Fig. 2.10. The strength gain is thus very slow, but the effect of pozzolan-
ic reactions on long-term strength can be considerable.

Ca (OH),, %

0 1
013 28 91 180 365 630
Time, days

Fig. 210  The strength gain from the pozzolanic reaction is proportional to the Ca(OH),
consumption. This is illustrated in the figure by the calcium hydroxide content
measured at successive intervals in cement pastes containing different amounts
of fly ash. The percentages show the content of fly ash. The fall in the Ca(OH),
content is due to the pozzolanic reaction.
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As with granulated blast furnace slag, the reaction rate is temperature-dependent, with an elevated
temperature giving a more rapid strength gain.

2.3.3 Silica fume

The manufacture of metallic silicon or the alloy component ferrosilicon produces flue gases con-
taining extremely fine particles of silicon dioxide, SiO,. The flue gases are cleaned by filtration and
the filter dust, silica fume, can be used as an additive. In recent decades silica fume has achieved
widespread use in concrete manufacture. Silica fume in normally added at a rate of 1 — 5 % of the
cement weight.

Silica fume is considerably more consistent in quality than fly ash. Like fly ash, it contains uncom-
busted carbon and free CaO. Quality requirements for silica fume can be found in BBK 94, which
also specifies requirements for reactivity.

The chemical composition of silica fume varies depending on whether it derives from the manufac-
ture of metallic silicon or ferrosilicon, see Table 2.8. The dominating mineral component in either
case is silicon dioxide (SiO,).

Silica fume undergoes the same pozzolanic reaction as fly ash, see above. The strength gain is more
rapid than that of fly ash but slower than that of cement. The pozzolanic reaction is highly tempera-
ture-dependent, so that the short-term strength is lower at low temperatures. However, long-term
strength is increased by replacing part of the cement with silica fume.

Table 2.8 Chemical composition of silicon fumes from the manufacture of metallic silicon
and ferrosilicon. (Hjort 1982)

Mineral component Content[%)]
From metallic From ferrosilicon
silicon manufacture manufacture
Sio, 94 -98 86-90
C 02-13 08-23
Fe, 0, 0.02-0.15 0.3-1.0
Al0, 01-04 0.2-0.6
Ca0 0.08-0.3 0.2-06
MgO 0.3-0.9 1.0-35
Na,O 01-04 08-1.8
K,0 0.2-0.7 15-35
S 01-0.3 02-04
Loss on ignition 08-15 20-40
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3. The function of binders in soil

The reactions that provide effective soil stabilization are (i) the reaction of cement with the water in
the soil, (ii) pozzolanic reactions between Ca(OH), from burnt lime or cement and pozzolanic min-
erals in the soil, and (iii) ion exchange between calcium ions from lime or cement and ions in the
clay. The Cementitious reaction have been described in section 2.1 above, pozzolanic reactions
between the soil and Ca(OH), are described in section 3.1, and stabilization by ion exchange is de-
scribed in section 3.2. A temporary stabilizing effect can also be achieved by the dewatering that
takes place when binders consume water. However, this effect is reversed as the soil rehydrates.

Assuming that the binder used has the desired function in the soil at hand and that mixing has been
carried out correctly, the outcome depends on the quantity of binder added, i.e. on the water/total-
cementitious ratio wtcr, cf. Fig. 2.3. In the case of burnt lime, however, the soil must contain
enough pozzolana to react with the Ca(OH),. If all the pozzolana in the soil has been consumed,
adding more lime will give no strength increment.

At a minimum, the quantity of binder added must be sufficient to build up a load-bearing skeleton.
If less than this quantity is used, no stabilization will occur, see Fig. 3.1. Thus more binder of a
given type needs to be added to a porous, watery soil such as peat or mud than to a more densely
compacted soil.

Fig. 3.2 shows shear strengths of a number of stabilized soils. It will be seen that the lowest
strengths are achieved in peat and mud, which are the most “porous” soils (those containing the
least solids). In Fig. 3.3 the water/total-cementitious ratios of the soils in Fig. 3.2 have been calcu-
lated. Although the shear strengths in Fig. 3.3 refer to quite different soil types, it is clearly seen
that a higher water/total-cementitious ratio gives lower strength. The inverse relation between wa-
ter/total-cementitious ratio and shear strength is still more obvious for any one given soil, see

Fig 3.4.
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Fig. 3.1 General relation between binder quantity and shear strength.
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Fig. 3.2 Measured shear strengths of stabilized soils 28 days after mixing, and the shear
strengths of the same soils in unstabilized, “undisturbed" condition. Stabilization
and strength determination performed in laboratory. (Ahnberg et al. 1995)
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Fig. 3.3 Measured shear strengths of cement stabilized soils as a function of water/total-
cementitious ratio wtcr 28 days after mixing. Stabilization and strength determina-
tion performed in laboratory. Values after Ahnberg et al. (1995).
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Fig. 3.4 Relation between water/total-cementitious ratio wtcr and strength for a clayey mud
stabilized with cement and with lime, respectively, 28 days after mixing. Stabilization
and strength determination performed in laboratory. (Ahnberg et al. 1995)

3.1 POZZOLANIC REACTION OF SOIL WITH CALCIUM HYDROXIDE

Soils, particularly clays and silts, usually contain aluminous and siliceous minerals. Some of these
possess pozzolanic properties, i.e. under certain conditions they can react with Ca(OH), to form
strength-enhancing reaction products. The pozzolanic reaction is similar to that which occurs be-
tween fly ash or silica fume and Ca(OH),, see Equations 14 and 15. The soil can also contain larger
quantities of aluminous minerals which take part in the reaction. The reaction product will then be
not a CSH gel but calcium aluminate silicate hydrate (CASH), a closely similar mineral containing
aluminium. Clays and silts low in aluminium form CSH gel as per Equations 14 and 15. The reac-
tion can be written schematically as

Ca(OH), + pozzolana + H,0 — CASH (CSH) (16)

The composition of the CASH gel can vary depending on the pozzolanic minerals present in the
soil. Varieties of CASH include the minerals C,ASH, (stratlingite or straetlingite), C,AH, and the
series from C;AH to C;ASH, (hydrogarnet).

The calcium hydroxide may originate either from the reaction of cement with water or from that of
lime with water, see sections 2.1 and 2.2 respectively. The cementitious and calcareous reactions
also result in a high soil pH, which is a condition for the subsequent pozzolanic reaction. The poz-
zolanic reaction is strongly temperature-dependent. A low temperature results in a slow strength
gain. The hydration of cement and particularly that of lime generates heat, which plays an impor-
tant role in initiating the pozzolanic reactions.
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100 g of cement reacts with 25 g of water yielding 100 g of CSH and 25 g of Ca(OH),. The calcare-
ous reaction forms a considerably larger amount of Ca(OH),: 100 g of CaO reacts with 32 g of wa-
ter yielding 132 g of Ca(OH),, since this is the sole reaction product. If stratlingite is formed in the
pozzolanic reaction between soil and Ca(OH),, 100 g of Ca(OH), yields 282 g of stratlingite. Thus,
since soil is consumed in the pozzolanic reaction, the weight of strength-enhancing reaction prod-
ucts formed exceeds the weight of binder added. This is illustrated in Table 3.1.

Table 3.1  Quantity of stabilizing products from complete reaction of 100 g binder.

Strength-enhancing reaction products [g]

reaction with water puzzolanic reaction total
100 g cement yields 100 71 171
100 g CaO yields 0 373 373

The above discussion assumes that the soil contains sufficient pozzolanic minerals for all of the
Ca(OH), to react to form stratlingite. If the soil is saturated with Ca(OH), the CaO will yield less
strength-enhancing reaction products than shown in Table 3.1. Burnt lime can yield a greater total
weight of reaction products than cement, and in certain souls with high contents of pozzolanic min-
erals it can therefore give a higher final strength. However, since pozzolanic reactions are slow, it
takes an extremely long time for all the Ca(OH), to react to form CASH. The rate at which the poz-
zolanic reaction proceeds depends partly on the temperature, partly on the contact surface between
the soil and the Ca(OH),, i.e. on the specific surface of the soil and on the mixing method. To ac-
celerate the reaction, as much as possible of the pozzolanic soil must be exposed to Ca(OH),.

Fig. 3.5 shows laboratory measurements of the strength gain of soils containing pozzolanic minerals
after stabilization with lime, lime+cement, and cement. The storage temperature was 8 °C for the
specimens stabilized with cement and lime+cement and 20 °C for the specimens stabilized with
lime.

With cement as stabilizer, high strength is quickly attained as CSH begins to form within a few
hours of water being added. Fig. 3.6 shows schematically the growth in the weight of pozzolanic
reaction products of lime and cement in the presence of an excess of pozzolanic minerals.

However, the weight of reaction products is only an indication of the strength of the stabilized soil.
The strength actually imparted to a soil by a given weight of reaction products depends on how well
the soil particles are bound together by the products and how effectively they fill voids and “densi-
fy” the soil.
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Fig. 3.5 Mean measured strength gain of soil stabilized with lime, lime+cement, and cement.
Specimens stabilized with cement and lime+cement were stored at 8 °C, specimens
stabilized with lime at 20 °C. (Ahnberg et al. 1995)
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Fig. 3.6 Schematic graph of weight of pozzolanic reaction products formed by10 g
stabilizer per 100 g dry solids in the presence of an excess of pozzolanic minerals.
(Ahnberg et al. 1995)
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3.2 STABILIZATION OF CLAY BY ION EXCHANGE

Clays can undergo a structural change by ion exchange which stabilizes the soil. The ion exchange
can convert a dispersed clay with low plasticity into a flocculated form with high plasticity, see
Fig. 3.7. A dispersed clay consists of flat particles separated by thin films of water. On the surfaces
of the particles there is a concentration of positive ions (cations), usually potassium or sodium.
Mixing a binder with the soil introduces new ions — mainly calcium — which differ in charge and
size from the cations in the clay. An ion exchange can then take place. The calcium ions disrupt the
structure of the clay, causing it to flocculate and giving an apparent change in the particle size dis-
tribution. According to Assarsson (1977) the requirement of calcium ions is equivalent to ~0.1 g
Ca(OH), per kg clay.

Na* form Ca’" form
dispersed
low plasticity flocculated

high plasticity

Fig. 3.7 Effect of ion exchange. lllite and kaolinite. (Miiller-Vonmoos 1983)

The size of the ion exchange effect depends on the ion exchange capacity of the clay, which in turn
depends on the total surface area of the particles and on the geological origin of the clay (Ahnberg
et al. 1995). Moreover, cement has a lower ion exchange capacity than lime, as large quantities of
potassium and sodium ions are released from the cement when it reacts with water. lon exchange
with the potassium and sodium ions in the clay is then reduced or inhibited by the potassium and
sodium ions already present in the aqueous phase.

3.3 CLAY AND SILT

3.3.1 Stabilization with cement

When cement comes in contact with the water in the soil hydration begins immediately, giving a
rapid gain in strength. About half of the cement has reacted after 3 days, ~ 60 % after 7 days, and
~ 90 % after three months. The reaction products are CSH gel, the product responsible for the
strength gain, and calcium hydroxide, Ca(OH),. The hydration of cement is described in sec-
tion 2.1.

In pozzolanic clays and silts a secondary reaction can take place between the soil and the Ca(OH),

product which provides a further strength gain, see section 3.1. However, this reaction is much
slower than the hydration of cement.
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Cement reacts more slowly at low temperatures. In Sweden the temperature in the ground is nor-
mally around 8 °C, which means that the cementitious reaction is relatively slow. The cementitious
reaction is exothermic, i.e. generates heat. According to Ahnberg et al. (1995) this reaction can
raise the ground temperature by some 5 — 10 °C. The temperature rise is only temporary: when the
cementitious reaction stops the ground temperature falls again. However, the secondary pozzolanic
reactions are strongly temperature-dependent and thus the temporarily elevated temperature gives
the pozzolanic reactions a better opportunity to start up.

Organic substances have a negative effect on stabilization effectiveness. Humic acids and other acid
groups react with Ca(OH), forming insoluble products. They also depress the pH, making the
strength gain slower. However, the organic content of clays and silts is generally too low to affect
the effectiveness of stabilization by cement.

The stabilization effect of cement in the soil is largely based on the strength of the CSH gel. The gel
grows outwards from the cement particles, see Fig. 2.1. To ensure that the strength of the stabilized
soil is consistent, the cement must therefore be mixed into the soil in such a way that the cement
particles are distributed as evenly as possible.

In the stabilization of clays by deep soil mixing with cement, a thin layer of relatively loose clay
sometimes forms in a boundary zone between the stabilized clay column and the surrounding unsta-
bilized clay. The presence of this boundary zone prevents the column and the surrounding soil from
interacting as intended. The reason for the formation of this boundary zone is not understood. One
suggested explanation is shrinkage of the column as the cement hydrates, leaving a narrow, water-
filled gap between the column and the surrounding clay. Another explanation is that clays become
more friable when they are desalinized. Ahnberg et al. (1995) measured a depressed CI- content in
the neighbourhood of cement-stabilized columns, which could result in a boundary zone of looser
clay. The boundary zone problem tends to be less pronounced when the cement is mixed with burnt
lime.

3.3.2 Stabilization with lime

Burnt lime reacts very rapidly on coming in contact with the water in the soil, forming Ca(OH),
with the generation of a great deal of heat, see section 2.2. The reaction gives no strength gain but
merely results in dewatering and a sharp rise in temperature. The strength gain comes about by sec-
ondary pozzolanic reactions between aluminous and siliceous compounds in the soil and the
Ca(OH), formed by hydration of the lime (see section 3.1), and in clay soils also by ion exchange
(see section 3.2).

The dewatering can provide a temporary stabilizing effect, but this is not lasting as the water con-
tent of the soil will rise again when the reaction ceases. The violent evolution of heat can temporari-
ly raise the temperature by 40 — 50 °C, approaching 100 °C locally (Ahnberg et al. 1995). This tem-
perature rise plays an important role in initiating the secondary pozzolanic reaction, see section 3.1.
The pozzolanic reaction is strongly temperature-dependent and the strength gain flattens out as the
temperature returns to its normal value, i.e. around 8 °C in Sweden. However, because of the very
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large amount of heat that is released on slaking it can take a considerable time for the ground tem-
perature to return to normal.

Lime stabilization is more sensitive than cement stabilization to organic material in the soil. Humic
acids react with Ca(OH), forming insoluble products which precipitate out on the particles, inhibit-
ing strength gain via pozzolanic reactions.

3.3.3 Stabilization with a cement-lime mix

It is often beneficial to combine cement and lime. The hydration of the cement gives a rapid
strength gain, while the lime generates heat which accelerates the cementitious and pozzolanic reac-
tions. The hydration of the lime also produces large amounts of Ca(OH),, required for the slower
pozzolanic reactions and for ion exchange in clays, see sections 3.1 and 3.2.

The amount of lime added should not exceed that required for reaction of the available pozzolanic
minerals with the Ca(OH), formed. Once all the pozzolana is consumed, the lime makes no further
contribution to strength. According to Ahnberg et al. (1995), the optimal mix for high strength gain
within a short time after deep soil mixing is in the range 60 — 90 % cement and 40 — 10 % lime.

3.3.4 Stabilization with latent hydraulic and pozzolanic additives

Blast furnace slag, being a latent hydraulic additive, requires activation by e.g. Ca(OH),, after
which the reaction can proceed spontaneously. Pozzolanic additives such as fly ash and silica fume
require an external source of Ca(OH),, see section 2.3. The Ca(OH), may be supplied by hydration
of cement or lime. Hence latent hydraulic and pozzolanic additives can never be used alone but
only as additives to cement and lime.

Since the pozzolanic reaction that takes place with the additives consumes Ca(OH),, it reduces the
ability of the clay or silt to form CASH, see section 3.1. Thus if latent hydraulic and pozzolanic
additives are used, the soil cannot be fully utilized in the pozzolanic reaction and hence a smaller
weight of reaction products is formed. It is therefore in principle unnecessary to add latent hydrau-
lic and pozzolanic additives to pozzolanic clays and silts.

3.4 MUD AND PEAT

Mud and peat require larger stabilizer quantities than clay and silt. This is because they contain few
solids to stabilize, and therefore more stabilizer is needed to bind the particles together. Mud and
peat also have much higher porosity and water:soil ratio. The high water:content gives a low water/
total-cementitious ratio, resulting in low strength. To increase the water/total-cementitious ratio and
hence the strength, more stabilizer must be added.

According to Axelsson et al. (2000) there are indications that in soils with high organic content the
quantity of binder must exceed a certain threshold before any stabilization is obtained. A possible
reason for this threshold effect may be that sufficient binder must be added to neutralize the humic
acids. Pousette (2001) also found that humic acids play a critical role in the ability of binders to
stabilize soil. She measured up to a sixfold difference in shear strength between stabilized speci-
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mens of low-humified Sphagnum peat and highly humified Carex peat. According to Pousette, sta-
bilization of Carex peat requires a considerably larger quantity of stabilizer.

3.4.1 Stabilization with cement

Contact with the water in the mud or peat causes the cement to hydrate forming CSH gel and
Ca(OH),, see section 2.1. Compared with clay and silt, mud and peat have a considerably lower
content of clay particles that can enter into pozzolanic reactions. The secondary pozzolanic reaction
between Ca(OH), and the soil is therefore slight and makes no significant contribution to strength.

Mud and peat have high contents of organic material, which may include humus and humic acids.
Humic acids react with Ca(OH), forming insoluble products which precipitate out on the clay parti-
cles. This further inhibits pozzolanic reactions. The acids also lower the pH, giving a slower
strength gain. However, cement is less sensitive to humic acids than lime, since CSH gel can still
form even if the acids react with the Ca(OH),.

3.4.2 Stabilization with lime

Lime normally has very little stabilization effect in mud and peat. This is because the strength gain
in lime-stabilized soils is mainly due to pozzolanic reactions with minerals in the soil. Organic soils
such as peat and mud usually contain few clay particles with pozzolanic properties that the lime can
react with. The pozzolanic reaction is also inhibited by humic acids, see above.

3.4.3 Stabilization with cement-lime mix

Since the strength gain from stabilization with lime is mainly due to pozzolanic reactions between
Ca(OH), and the soil, reactions which are weak in organic soils, the lime in a cement-lime mix can
make very little contribution to strength. This was demonstrated experimentally by Axelsson et al.
(2000), who showed that 50:50 mixes of rapid-hardening cement (SH) and lime give low shear
strength compared with rapid-hardening cement alone.

3.4.4 Stabilization with latent hydraulic and pozzolanic additives

Pozzolanic reactions in organic soils can be promoted by the use of additives, which can therefore
have a positive effect on stabilization. (The reactions and strength gain of additives are described in
section 2.3.) Organic soils often do not contain enough pozzolanic particles in themselves to con-
sume all the Ca(OH), that is formed when the cement is hydrated.

Axelsson et al. (2000) showed that mixes with additives gave lower shear strength than cement
alone at 14 and 26 days in two different muds. However, it is possible that the difference would
decrease over time, as the pozzolanic reactions between additives and Ca(OH), are slow and would
not have proceeded to completion at 26 days.

3.4.5 Fillers

Fillers such as fine sand or limestone filler (inert calcium carbonate, CaCO,) can be used to in-
crease the number of particles in the soil. The filler has no chemical reaction but increases strength
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by increasing the number of particles available for the binder to unite and use to build a load-bear-
ing structure. Moreover, the filler may be presumed to fill any voids arising during stabilization.

Since no filler is absolutely inert, it is possible that fillers may enter into pozzolanic reactions. Sili-
ceous sand, for example, may react with Ca(OH), and contribute to the strength gain. However,
since the sand grains are comparatively large and therefore have low specific surface, only a rela-
tively small surface area is exposed to the calcium hydroxide and available for the pozzolanic reac-
tion. The effect of pozzolanic reactions with the filler is therefore negligible.

By replacing a certain portion of the binder with filler, the cost of stabilization may at least theoreti-
cally be reduced.
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4. Interpretation of laboratory results

Deep stabilization must always be preceded by laboratory tests to verify the technical performance
of the binder in the soil at hand. In order to interpret the results of these tests it is necessary to allow
for the effects of the work method and of possible temperature differences. The binder that gives
the best stabilization effect in laboratory tests may not necessarily be the most effective in the field
owing to e.g. the very different mixing methods involved.

4.1 EFFECT OF LABORATORY METHOD ON OUTCOME

There are several methods of homogenizing the soil and mixing the stabilizer into it. Homogeniza-
tion is usually carried out by means of some form of kitchen mixer or concrete mixer and normally
takes between 2 and 6 minutes. It normally takes place the day before the stabilizer is added. The
same equipment is used for mixing the soil with the stabilizer. The mixing time is normally be-
tween 4 and 10 minutes (Edstam 2000).

The specimens are then formed and compacted into tubes. This operation too is done by a number
of different methods. Both static and dynamic compaction are used.

In the case of peat, special methods have been developed for mixing and specimen preparation, see
Andersson et al. (2001).

Differences in work methods between laboratories can result in variations in measured shear
strength. Edstam (2000) reports a deviation of 22 % from the mean within laboratories and devia-
tions of up to 53 % between laboratories.

Different binders stabilize the soil by different mechanisms. In the case of cement, the reaction
products that bind the soil particles together grow on the surface of the cement particles. It is there-
fore important for the cement to be uniformly distributed through the soil. Lime reacts initially
forming calcium hydroxide, and it is the secondary reaction of Ca(OH), with minerals in the soil
that gives the stabilized soil its strength. Since calcium hydroxide is soluble, uniform distribution of
the lime is of less importance. Thus uneven distribution has a greater negative effect on cement than
on lime.

Laboratory specimens are usually prepared with thoroughly fragmented soil and the samples are
considerably better mixed than in the field. This means that laboratory tests result in higher strength
than one can expect to achieve in the field. Hence no certain conclusions can be drawn from labora-
tory tests regarding the method by which the stabilized columns should be produced.
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4.2 EFFECT OF TEMPERATURE ON OUTCOME

Temperature is of the greatest importance for the reaction rate and the final outcome. Pozzolanic
reactions are particularly temperature-dependent. Thus if laboratory testing takes place at 20 °C the
pozzolanic reactions will proceed considerably more rapidly than in the ground, which in Sweden
normally has a temperature of ~8 °C. Lime and mixes containing pozzolanic additives can therefore
exhibit considerably faster strength gains in laboratory tests performed at 20 °C than can be expect-
ed in the field. Cement too exhibits more rapid strength gain at elevated temperatures, but cement
hydration is considerably less affected by temperature than are pozzolanic reactions.

The size and form of the specimens also has a major effect on reaction rate and on outcome. Small,
uninsulated specimens stored in cold conditions (e.g. at 8 °C) will cool down rapidly, slowing the
reaction rate. In the field, large volumes of soil are heated up by the cementitious reaction and still
more so by the hydration of lime. The ground therefore takes considerably longer to cool than do
small laboratory samples stored at 8 °C. The positive effect on the strength gain from the heat evo-
lution of the binder may thus be less pronounced in a /forundersdkning/ in the laboratory than it
would be in the field.

For a correct comparison of the relative effectiveness of different binders it would be desirable to
perform laboratory testing in such a way as to reproduce the environment in the ground as closely
as possible.
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5. Production of columns in the field

In deep soil mixing one aims to distribute the binder so that the chemical reactions can take place
under the best possible conditions to produce uniform columns. Ideally the properties of columns
should be uniform both between columns and along and across the individual column. However,
soils have very complex rheological properties which make mixing difficult. The movement impart-
ed to the soil by the mixing tool is quickly damped.

Deep soil mixing is carried out in Sweden by a method in which the dry binder is mixed into the
soil by means of compressed air. According to Larsson (2000) this method can be divided into three
phases: (i) insertion of the mixing tool, (ii) dispersion of binder in the earth, and (iii) molecular dif-
fusion.

During the insertion phase the rotating tool is driven to the desired depth. In this phase the soil
structure may be broken up, making the clay mineral more accessible for chemical reactions. The
mixing tool in use today is normally inserted at a rate of 100 mm per revolution and has angled
paddles to facilitate insertion, see Fig. 5.1. This means that relatively little energy is imparted to the
process of pulverizing the soil and it is doubtful whether its structure is significantly modified. Ac-
cording to Larsson (2000), ways of generating the shear forces necessary to break up the soil struc-
ture include increasing the paddle angle, increasing the rotation speed, or increasing the number of
shear zones. The number of shear zones can be increased by e.g. drilling holes in the paddles, using
more paddles, angling the blades opposite ways, or using serrated blades. Another way to promote
and facilitate the comminution of the soil would be to add a peptizing agent to the soil during inser-
tion of the mixing tool.

N\
/

7 4 Fig. 5.1

The standard tool generally used for deep soil
mixing in Sweden. (Carlsten & Ekstrom 1995)
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During the dispersion process the binder is mixed and distributed, the solid particles are moistened,
and agglomerates are broken up and distributed throughout the mix. The binder is expelled by com-
pressed air through a hole above the mixing tool, see Fig. 5.1. Mixing and distribution of the binder
through the soil are accomplished partly by the energy of the compressed air and partly by the rota-
tion of the tool. The tool must be suitably designed to avoid variations in concentration of the bind-
er across the width of the column. Moistening of the binder follows. Since the binder particles are
too light to sink into the clay suspension under their own weight, moistening is difficult to accom-
plish without energy being supplied from the mixing tool. Moistening is therefore promoted by the
high compressive and shear forces generated by the mixing tool. Finally, agglomerates must be
broken up to avoid variations in concentration. Agglomerates prevent efficient utilization of the
binder as not all the binder particles will contribute to a uniform strength gain within the stabilized
volume of soil. Agglomerates are broken up by the strong compressive and shear forces generated
as the soil is set in motion and “kneaded”. According to Larsson (2000) a kneading effect can be
produced by the use of paddles at a large angle to the horizontal (~45°). Finally, after agglomerates
have been broken up, the binder must be distributed through the mix in case it was not adequately
distributed during the initial mixing. Distribution is most efficient if the soil has been thoroughly
broken up during the insertion of the tool.

The efficiency of the dispersion process with a given mixing tool depends mainly on the air pres-
sure used for jetting and on the penetration per revolution and the rotation rate of the tool. One
might also speculate that the dispersion process could be helped by mixing a peptizing agent with
the soil to promote the formation of a finely divided system.

When the column is installed in the ground, the mixing process continues by molecular diffusion.
This process is most prominent when lime is used, as dissolved Ca(OH), can diffuse into earth with
a lower Ca(OH), concentration and react with the pozzolanic minerals in it. The reaction products
of cement, on the other hand, mainly form on the surface of the cement particles. Correct imple-
mentation of the dispersion process is thus more critical when cement is used as the binder.
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6. Long-term properties (durability)

The cementitious, calcareous and pozzolanic reactions have similar reaction products (CSH and
CASH gel). Materials based on these reaction products have been in use for a very long time — they
are known to have been used by the Etruscans in Italy 2500 years ago — and the properties of the
reaction products are well-known and studied. CSH and CASH gels are normally very durable.
Many buildings survive from the Roman period, when the ancient use of concrete reached its
height, and some are actually still in use. One of the best known is the Pantheon in Rome, which
has a free-bearing concrete dome spanning 43 metres. It was built ¢. 120 A.p. and is used today as a
church.

In certain environments, however, the reaction products can break down rather quickly. To attain
the required lifespan, stabilization must be capable of resisting the environment in which it serves.
Deep stabilization can be subject to both physical and chemical attacks. Some of the mechanisms of
attack are briefly described below.

In the upper soil layers stabilization may be susceptible to frost damage. When the water in a stabi-
lized soil freezes to ice, it expands by 9 %. If the ice does not have room to grow without causing
stresses there is a risk of cracking. However, there is no risk of frost damage if there is a sufficient
volume of air for the ice to grow. Thus the water content must exceed a critical level for cracks to
form.

The water in the soil can impact negatively on stabilization. If the water is soft and/or acid, lime
leaching can occur. The water first dissolves the calcium hydroxide and then liberates calcium from
the CSH gel. This process can only proceed and cause damage if there is a continuous inflow of soft
or acid water and if the lime-saturated water can drain away. In other words, the soil must be per-
meable with a flow of water through it. The permeability of deep-stabilized soils is normally too
low for there to be any risk of leaching. However, it is conceivable that a column could penetrate a
permeable layer of sand or other stratum with flowing water.

If the soil contains sulfates the stabilization may be subject to sulfate attack, so-called delayed et-
tringite formation. As described in section 2.1.2, monosulfate can be converted to ettringite, accom-
panied by swelling, if sulfate ions are supplied from an external source. It is doubtful whether de-
layed ettringite formation causes problems in deep stabilization as the porosity of the stabilized
earth is presumably high enough to allow ettringite to form without compromising the performance
of the stabilization.

Certain salts, such as ammonium and magnesium salts, react with hydroxide ions, thus lowering the

pH value. Since hydroxide ions are consumed, this mode of attack may be regarded as an acid at-
tack.
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With binders or binder combinations having different reaction products from those produced by
cementitious, calcareous and pozzolanic reactions, other durability problems may be encountered
than those mentioned above. Some such binders and binder combinations are discussed in Chapter 7.
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{. Other possible binders
and binder combinations

The use of other binders may be attractive in certain situations. An example might be an ash from a
local heating plant or factory. The advantage of using such a locally produced ash may be econom-
ic, due to low price and transport cost, or it may be environmental if it enables utilization of a resi-
due that would otherwise be disposed of in landfill. It is important to realise that almost all industri-
al residues products will have an environmental impact due to their composition. A proposed addi-
tive must be verified not to contain unsafe levels of heavy metals or other environmentally hazard-
ous substances. It is only environmentally justifiable to use a residue if alternative uses or landfill-
ing are worse options from an environmental viewpoint.

Unless the material is merely to serve as a filler, it is a fundamental condition of use that the materi-
al is reactive and that the reaction products add to the strength of the soil. It is also important that
the products are stable.

71 HIGH-ALUMINA CEMENT

High-alumina cement is made from limestone and bauxite and thus consists mainly of calcium alu-
minate. Due to its production process high-alumina cement is several times more expensive than
Portland cement and its limited use means that transport costs are high. Hydration is very rapid,
taking place within a day, in which time it attains close to its full strength. High-alumina cement
contains considerably more chemically combined water than Portland cement.

One of the most important reaction products of high-alumina cement is dicalcium aluminate hy-
drate, C,AHj, an unstable compound which tends to change into tricalcium aluminate hydrate,
C,AH,. The transition from C,AH, to C;AH, leaves the material porous, resulting in a loss of
strength. In concrete construction the use of high-alumina cement is therefore not permitted in load-
bearing structures. The rate of change from C,AH, to C;AH is hastened by moisture and tempera-
ture, the deleterious effect of temperature on strength being most pronounced if hydration took
place at high temperatures. The durability of high-alumina cement in deep stabilization should be
further investigated before it is used in the field.

Adding gypsum to high-alumina cement produces a very rapid strength gain. The sulfate in the gyp-
sum activates the cement and ettringite is form. The formation of ettringite is accompanied by ex-
pansion, with the result that it has lower strength than the products formed when high-alumina ce-
ment reacts with water without added gypsum. Ettringite is only stable at pH above 10, so mixes of
high-alumina cement with gypsum should not be used in soils where lower pH values can be ex-
pected.
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7.2 OTHER SLAGS

There are a variety of slags derived from the metallurgical industry. The steel industry produces a
slag from the decarburization process in LD and Bessemer converters. There are also non-ferrous
slags from other metal industries, e.g. copper, zinc, phosphorus and nickel slags.

Unlike blast furnace slag, these slags are generally crystalline and therefore inert. Hence the only
purpose they can serve in deep stabilization is as fillers, see section 3.4.5. Caution must be exer-
cised when using slags as fillers as some slags may contain heavy metals and other hazardous sub-
stances that can leach into the surrounding soil.

Alkali-activated and sulfate-activated slags are latent hydraulic slags that are activated by alkali
and/or sulfates. Alkali and sulfates are effective means of activating slags such as granulated blast
furnace slag. The strength gain can be very rapid. The properties of the reaction products vary ac-
cording to the quantity and type of activator used. Knowledge of alkali-activated and sulfate-acti-
vated slags is deficient and they should therefore be used with great caution.

7.3 BIOMASS ASH AND REFUSE ASH

Biomass ash comes from the burning of wood, peat, straw etc. Like fly ash from pulverized coal
fuelled power plants, biomass ash can have pozzolanic properties. The quality of the ash depends
partly on the fuel burnt and partly on the combustion process. Before a biomass ash may be used its
reactivity and chemical composition must be tested. If the fuel or the combustion process is
changed the test must be repeated.

Refuse ash is a by-product of the cleaning of flue gases in refuse incineration plants. It can have
pozzolanic properties. Since the content of the refuse can vary widely, the properties of the ash it-
self can vary. There is also a risk of it containing environmentally hazardous substances. Refuse ash
should therefore be used with great caution. Both its technical and environmental characteristics
must be continually monitored.

7.4 GYPSUM

When a gypsum-lime mix comes in contact with clay and water, ettringite is formed. Ettringite has
a high density and fills out the voids between the clay particles. Holm et al. (1987) compared lime—
gypsum mixes with lime alone in laboratory and field tests. The laboratory tests showed a more
rapid strength gain in the presence of gypsum, while the field tests indicated no difference in the
initial months after mixing.

The sulfates in gypsum can also be used to activate aluminous products such as fly ash, slags and

high-alumina cement. Adding gypsum to high-alumina cement gives a very rapid strength gain due
to ettringite formation.
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The durability of lime—gypsum mixes and other gypsum combinations is poorly studied. However,
given that ettringite is only stable at pH values over 10, gypsum addition is inappropriate in soils
where the pH may be expected to be lower. Moreover, stabilization with gypsum in the immediate
vicinity of concrete structures may result in sulfate attack on the concrete. The study by Holm et al.
(1987) shows that gypsum may come under consideration for temporary soil reinforcement where a
rapid gain in strength is desired and long-term stability is not an issue.

7.5 SLAKED LIME

The permanent strength gain obtained when lime (CaO) is used as a stabilizer is due to pozzolanic
reactions between aluminous and siliceous compounds in  the soil and the slaked lime (Ca(OH),)
formed when the lime comes in contact with the water in the soil (see section 3.1). In clay there is
also a possible strength gain from ion exchange (see section 3.2). This implies that slaked lime itself
can be used as a stabilizer. However, this sacrifices the major heat evolution that takes place on the
hydration of lime. The strongly temperature-dependent pozzolanic reactions will therefore proceed
at a still slower rate. Slaked lime also does not afford the temporary stabilization effect due to de-
watering that the hydration of burnt lime provides, see section 2.2.
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8. Choice of stabilizing agent

The choice of stabilizing agent should always be based on the reactions that provide the gain in
strength. The desired reactions must be possible in the soil in question. In mud and peat, for exam-
ple, addition of lime will have little or no effect because the pozzolanic reactions are inhibited by
humic acids and because of the scarcity of pozzolanic minerals in these soils. On the other hand,
lime can be effective in clays and silts free from organic content but containing pozzolanic miner-
als.

Experience has shown that in clays and silts a mix of cement and lime often results in stabilization
with high strength and good interaction with the surrounding soil. The higher the organic content
and the fewer the pozzolanic particles in the soil, the more cement should be used. To achieve high
strength in clay and silt within a short time after stabilization, Ahnberg et al. (1995) suggest that the
optimal mix is in the range 60 — 90 % cement and 40 — 10 % lime.

The reactions that produce strength in latent hydraulic and especially in pozzolanic additives con-
sume Ca(OH),. This means that less reaction products can be formed between Ca(OH), and the soil,
and hence less reaction products will be formed overall. These additives may therefore be unsuita-
ble in pozzolanic soils such as clay and silt.

Ahnberg et al. (1995) carried out trials in which a number of different soils were stabilized with
100 % lime, a mix of 25 % lime with 75 % cement, and 100 % cement. The effectiveness of stabili-
zation was then assessed, see Table 8.1.

Axelsson et al. (2000) carried out a study in which the stabilization effect of different stabilizers
was tested in mud and peat. These are problematic soils, high in organic content and poor in poz-
zolanic minerals and therefore difficult to stabilize. The stabilizers tested were various cements,
lime, ground granulated blast furnace slag, fly ashes from two different coal-fuelled power stations,
and by-pass ash from cement manufacturing. On the basis of the results of the tests and of the au-
thors’ own experience Axelsson et al. (2000) recommend the use of cement or a mix of cement and
granulated blast furnace slag. The quantities of binder suggested are 100-200 kg/m* for mud, 150 —
250 kg/m?® for peat, and 70 — 200 kg/m? for hydraulic fill.

Before the final choice of stabilizer is made, a technical preliminary investigation must always be
done to test the properties of the stabilizer in the soil in question. If an additive is used, it must be
remembered that its properties may vary widely from batch to batch due to variations in raw materi-
als and in the industrial processes. These materials must therefore always be assessed from both
technical and environmental points of view prior to use.
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Table 8.1

Assessment of strength-enhancing effects of different stabilizers in soils tested
by Ahnberg et al. (1995).

Soils
clayey silty clay clay clay clay muddy  clayey mud peat
silt clay (quick) (saline)  (sulphide) clay mud
Stabilizers
Lime . + . + + - . . - -
Lime-cement  + + + + + + + . . .
Cement ++ ++ + ++ + + + + + +

- no effect or poor effect « fairly good effect
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