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S u m m a r y 

1. A survey of methods to calculate the pressure distribution 

between an elastic beam and an elastic foundation is given. The 
methods are based on either the Winkler or the Boussinesq model 

of the subgrade reaction. In some cases the models are modified, 

z. The limitations and validity of the different methods are 

discussed. It is stated that ordinarily the methods based on 

the Boussinesq model are preferable. 

3. The case of a distributed load applied at the centre of an 
infinite strip, resting on a single layer elastic foundation, 

is investigated by the terms of the Boussinesq theory. The re­
sults are given in closed form and presented in a diagram 

giving maximum contact pressure, maximum deflection and maximum 

bending moment. 

Introduction 

The pressure distribution between an elastic beam and an 

elastic foundation can be calculated from two different 

models for the subgrade reaction. 

In the first model, proposed by Winkler in 1867, the foun­

dation is treated as equivalent to a bed of elastic springs. 

The contact pressure q at any point of the beam is thus 

assumed to be proportional to the deflection y. 

In the second model proposed by Boussinesq (1885) the 

foundation is treated as a homogeneous isotropic elastic 

halfspace, characterized by the Young's modulus E and the 

Poisson's ratio v. The solutions are, however, complicated 

and therefore seldom used in practice. 
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A survey of methods based on the two models is presented in 

this paper, and the development, limitations and validity of 
the methods are also discussed. 

Considering elastic properties of the beam and the subgrade 

reaction, the Boussinesq model is closer to the true conditions 

of the foundation than the Winkler model. The reason that it 

has not been frequently used is that it takes so much labour 

to solve even a simple case. Thus, there is a need for solu­

tions in closed form for some standard cases of load appli­

cation. Such a solution is given in this paper for a case 

where a distributed load is applied at the centre of an in­

finite strip, resting on a single layer of elastic foundation. 

The solution is used in an example of practical design. 

1. Calculation of contact pressures between an elastic 

beam and an elastic foundation by the Winkler model 

The contact pressure between an elastic beam and an elastic 

foundation is commonly calculated from the model suggested 

by Winkler in 1867. This model, shown in Fig. 1.1, consists 

of an infinite number of independently acting elastic springs. 

The function of this model is that of an ideal liquid 

(Archimedes~ principle where p = y • y). The contact pressure 

q at any point of the beam is proportional to the displacement 
y at the same point, hence 

~=constant = k. y 
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Fig. 1.1 The simple Winkler model 

q (x) 

Fig. 1.2 Actual contact pressure distribution under 

beam resting on cohesive soil 
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The displacements are found from the differential equation 

4c4) + k = p (1. 1)y (x) 
dx 

where Elil = the flexural rigidity of the beam, 

y = the vertical displacement of the beam at 

the section x, 

k = the constant modulus of the springs, and 

P(x) = the applied load on the beam at the section x. 

Hetenyi (1946) has presented rigorous solutions to this equation 
for various end conditions. These solutions are, however, some­

what difficult to use in practice. Beside these solutions, 

several approximate solutions have been proposed. For example, 

Levinton (1947) has presented a method using redundant reactions, 

Gold (1948), Malter (1958) and Ray (1958) finite difference 

methods and Popov (1950) a semi-graphical method. Wright (1952) 
has proposed a method using relaxation procedures, Gazis (1958) 

an iterative method which is analogous with the Hardy Cross 

distribution method and Hendry (1958) a method based on basic 
function analysis. 

However, the Winkler model is afflicted with a fundamental 

error as it does not account for any continuity of the founda­

tion material. Consequently, the results are in many cases 

misleading. To improve the model, a number of modifications 

have been proposed, as accounted for in the following. 
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p 

k 

Fig. 1.3 Graszhoff's modified Winkler model. 
Increasing coefficient of subgrade reaction 

towards the beam edges 

Fig. 1.4 Hetenyi's modified Winkler model. 

Beam included in the foundation model 
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Modifications of the Winkler model 

In the case of a symmetrically loaded beam with infinite flexu­

ral rigidity it can be seen from Eq. (1,1) that the simple 

Winkler model renders a uniform distribution of the contact 

pressure. From tests it is, however, well known that for 

many soils the contact pressures at the edge regions of a 

stiff beam are very high (see Fig. 1.2). Besides, according 

to the Boussinesq model, the pressure at the edges of a beam 

with infinite flexural rigidity theoretically takes infinite 

values. As a consequence, modifications of the Winkler model 

have been proposed in order that a concave stress distribution 
be obtained for the above case. 

Graszhoff (1951) has modified the Winkler model by assuming 

that the coefficient k varies along the beam. As is shown 

in Fig. 1.3, k is assumed to increase towards the edges of the 

beam. Graszhoff has presented a numerical solution to this 
model which is a modification of the method of redundant reac­

tions proposed by Levinton (1947). 

Continuity can also be introduced by connecting the Winkler 

springs by strings. The forces in such strings increase with 

increasing curvature of the beam. The string force varies with 
2d y/dx 2 . The resulting differential equation to this modified 

model is 

2 
- S (4) + ky = P(x) (1. 2) 

dx 

where Sis the string constant. 
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As the simple Winkler bed is equivalent with an ideal liquid 

(Archimedes~ principle p = y y), the string connecting the 
Winkler springs at their upper ends is equivalent with the 

surface tension of a liquid. 

The solution to Eq. (1.2) is similar to the corresponding 

basic Winkler solution with the exception that large concen­

trated loads are set in at the ends of the beam. These end 

forces may be introduced arbitrarily since the value of the 

surface tension a is not generally known. 

Another modified model is obtained if the springs are replaced 

by columns of soil. The continuity is introduced by the 

friction between the soil columns. It is, however, difficult 
to evaluate the friction since the lateral pressure varies 

with the degree of lateral confinement. This modified model 

leads to a differential equation of the form 

4 
(4) + a (~~z) + ky = P(x) (1.3) 
dx 

In order to introduce continuity into the simple Winkler 

model, Hetenyi (1946) has included a fictive beam in the 

foundation as illustrated in Fig. 1.4. With this model the 

following differential equation is obtained 

d4 
+ B(4) + Cy = P(x) (1.4) 

dx 

However, the solution to this differential equation is com­

plicated. 
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The short list of modifications given here is not complete. 

However, all modifications have in common the fact that they 

cause such a complication of the theoretical problem that it 
is highly questionable whether the results are of such quality 

as to justify the calculation labor. A valuable alternative 
to the Winkler model which is basically different is the 
Boussinesq model. 

2. Methods based on the stress distribution in the 

homogeneous isotropic elastic half-space 
(Boussinesq model) 

The stress distributions calculated from the modified Winkler 

models are dependent on the parameters k, S, y, o, a etc. 
The parameters are difficult to evaluate. 

In a homogeneous isotropic elastic half-space, which contains 

the property of continuity, the stress distribution is corres­

pondingly dependent on the modulus of elasticity Es and the 
Poisson~s ratio vs. The values of these parameters can be 
estimated for most materials. 

Borowicka (1939) has presented a general solution to this 

problem using series expansion. But the application of the 

solution to practical problems leads to very extensive calcu­

lations. The solution is thus mainly of academic interest. 
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Fig. 2.1 Ohde's method. Influence diagram for 

the foundation deflection 
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Fig. 2.2 De Beer's method. Equalizing beam and soil 

deflections at three points (A,B,C) along 

the beam 
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Solutions by the difference method have been given by 

Schleicher (1926), Habel (1938) and Ohde (1942). According 

to this method the beam is divided into elements of such size 
that the pressure distribution for each element can be assumed 

to be approximately uniform. Ohde's method, which is a development 

of the methods proposed by Schleicher and Habel, is relatively 

simple. The deflection of the beam is by this method calculated 

by superposition of the influence from the different finite 

elements of the beam. The corresponding deflection of the 

foundation is found by superposition of the influence diagram 
for the foundation deflection as shown in Fig. 2.1. 

De Beer (1948, 1951, 1952), De Beer and Krsmanovic (1951, 1952), 
De Beer, Lousberg and Van Beveren (1956) and De Beer and 

Lousberg (1964) have also studied this problem. They used the 

elastic half-space as a model where the modulus of elasticity 

Es is constant or proportional to the applied pressure so that 

Es= C · P. This method is based on the principle that the 
deflection of the soil is equal to the deflection of the beam 

at a number of points. In this way a set of equations is 

obtained from which the contact pressure distribution acting 
along the surface between the beam and the foundation can be 

calculated, The contact pressure distribution has been 

assumed to be in the form of an n: th degree polynomial with 
n + 1 unknown coefficients. 

If the center of the beam is taken as a starting-point, the 
pressure distribution can be written in the form 

where qm is the average pressure. If the pressure distribution 

is approximated by a fourth degree parabola, five equations 

are required to solve the five unknown coefficients a , a
1 

,
0 

a 2 , a 3 and a4 . Three equations are obtained by equalizing 

beam and soil deflections at three points along the beam, 
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e.g. points A, B, C in Fig. 2.2. The line DE is used as a 

reference. Two additional equations are obtained by considering 

the equilibrium requirements of the beam. 

Barden (1962) has proposed an approximate method for calcula­
ting the pressure distribution under beams, which is based on 

De Beer's method. 

Krsmanovic (1965) has presented diagrams of bending moments in 

beams subjected to concentrated loads. Krsmanovic used De Beer's 

method, and the solution diagrams cover practically all com­

binations of modulus of elasticity for foundation and beam 
materials at different configurations of the beams. 

Different modifications have been applied also to the 
Boussinesq model. Modified models consisting of several layers 

of elastic materials or elastic springs resting on an elastic 

foundation may be mentioned (see Rabinovitch and Herrman (1960)), 

Most of the investigations are analytical. Few attempts have 

been made to modify the theories to fit experimental results. 

Important advances have recently been made by Vlasov and 

Leont'ev (1966). They use a modified model where the foundation 

consists of several elastic layers. With their method it is 

possible in each case to select a certain calculation scheme. 

The resulting equations can be solved by relatively simple 

mathematical means. 
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3. Discussion of the application of the methods 

Two basic models are used for the calculation of the pressure 
distribution under elastic beams resting on elastic foundations: 

the Winkler model and a model based on the theory of elasticity 
where the stresses are calculated according to Boussinesq. 

Within each model there are several calculation methods. The 

most important difference between the two models is that the 

calculations by the Boussinesq model are based on the modulus 

of elasticity of the soil which is a material constant while 

the calculations by the Winkler model are based on a purely 

hypothetical quantity k, the modulus of subgrade reaction. 

Terzaghi (1955) has discussed the factors affecting the value 

of k. Terzaghi (1955) and Vesic (1961 a) have shown that 

calculations give different results. However, they demonstrate 

that these differences can be attributed to the end conditions 

of the beam. For long beams the two approaches to the problem 
give practically the same results. 

Terzaghi (1955) has for cohesive soils proposed the following 
relationship for the modulus of subgrade reaction of long beams 

k; 0.67 k (3.1) 

where k is the modulus of subgrade reaction of a square plate 
with the side equal to the width of the beam. 

Vesic (1961 b) has given the following relationship between 

the modulus k, the soil characteristics Es, vs, flexural 
rigidity EbI and width B 
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k; 0.65 (3.2) 
1 - V s 

The fairly complicated calculations by the Winkler method are 

often not justified by the accuracy of the results. In fact, 

the results can be relatively poor, especially for short beams. 

However, even a mathematically exact analysis based on the 

theory of elasticity in the Boussinesq model does not necessarily 

imply that the solution is in accordance with reality, since the 

modulus of elasticity varies with depth and with the stress 

intensity (Terzaghi (1944), De Beer (1948, 1951, 1952), 

U.S. Waterways Experimental Station (1954)). 

Furthermore, soils cannot resist the extremely high stresses 

which theoretically occur at the edges of a beam with high 
flexural rigidity. In reality, plastic zones will develop and 

cause a reduction and rearrangement of the stress distribution 

at the end zones. Besides, the methods according to the theory 

of elasticity do not account for the permanent deformations 

caused by consolidation. 

Summarizing, it may be stated that the error resulting from an 

incorrect determination of the modulus of elasticity of the 

elastic foundation is generally less than the error caused by 

an incorrect determination of the constant kin the Winkler 

model. Therefore, a simple and approximate method based on an 

estimated modulus of elasticity of the foundation material will 

generally result in a more accurate stress distribution than 

complicated calculations based on a hypothetical modulus of 

subgrade reaction. 
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The difficulty is, however, that solutions by the Boussinesq 

model are generally given as-parameter charts or diagrams 
which are troublesome to use. For a number of standard 

cases of load application as for instance on the infinite 

strip it is possible to reach solutions in closed form, 
which will here be demonstrated by an example in the next 
section. 

4. Uniformly distributed load at the centre of an infinite 

strip on a single-layer elastic foundation 

(Solution according to the Boussinesq theory in closed 
form.) 

Strip plates which can be treated as infinitely long (length 

to width ratios> 4 a 5) are commonly used. 

The problem is two-dimensional. Only thin plates in contact 

with an underlying single layer elastic foundation are 

considered. The exact calculation of contact pressure for 

such plates, whatever model is used, is rather complicated 

from the mathematical point of view. By using an approximate 

semi-infinite space model, some of the mathematical difficulties 

can be removed from the problem, provided the depth of the 

elastic foundation is equal to or larger than the width of the 

contact zone under the plate. The results are presented in the 

form of a diagram giving maximum contact pressure, maximum 
deflection and maximum bending moment. 
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Fig. 4.la Strip supported by a single layer elastic 

foundation 

Fig. 4.lb Vertical disc of unity thickness supporting beam 

0 ,--=------ --------7 -x 

d 112~1d -

Fig. 4.2 Illustration of the deflected beam subjected to 

the concentrated load P 
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A strip supported by a single layer elastic foundation is shown 

in Fig. 4.la. The uniformly distributed load P is applied at 
the centre of a beam. The deformations are plane. Geometrical 
and elastic symbols are also shown in Fig. 4.la. Since the 

problem is two-dimensional it is only necessary to consider a 
vertical disc of unity thickness, as shown in Fig. 4.lb. 

The deflected beam is illustrated in Fig. 4.2. The contact 
pressure q(x) under the beam depends on the elastic and 

geometrical properties of the foundation material and of the 

beam. The bending moment at the centre of the beam is denoted 

by Mand the total deflection at the centre by v • The 
0 

restriction that the depth of the single-layer foundation is 
equal to or larger than the length of the contact pressure 

zone, ¼1:- 21, makes it possible to obtain a solution which is in­
dependent of the depth of the single-layer foundation. Since 

the theory of Boussinesq is strictly valid only for an infinite 

foundation depth, the resulting solution is only approximate. 
This approximation is justified in view of the Saint-Venant's 
principle. 

Consider a single load N acting at the end of the length \b, 

(Fig. 4.3). The stress conditions at the opposite end, point O, 

are dependent only to a limited extent on the boundary 

conditions at the depth d, provided that d ~ \b. Therefore, 

the reaction at a point between N and O can be calculated 

approximately from any stress function which fulfills the 

condition of compatibility at each point within the single 

layer. The same conclusion can be drawn for the special case 

of a circular plate on an elastic layer with finite or infi­
nite depth (see Vlasov and Leont'ev,1960). 
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JHE LOWER BOUNDARY 

Fig. 4.3 Illustration for the application of 
Saint-Venant~s principle. 

Upper and lower boundary conditions 
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If the Boussinesq theory is used for a single-layer foundation, 

the additional assumption must be made that the actual hosizontal 

deformations and the shear stresses along the lower boundary 

correspond to those from the Boussinesq theory and that the 

vertical deflection is zero along this boundary. Thus the 

application of the Boussinesq theory to the finite depth 

single-layer system requires an additional boundary condition 

at the lower boundary. Since the additional boundary condition 

cannot ordinarily be fulfilled, the limit¼£~ 1 is adopted to 

keep the inevitable discrepancies small. The resulting error 
\bdecreases as cl+ 0. 

Consider first the contact pressure q(t) at the boundary of 

the single-layer shown in Fig. 4.4a. The resulting differential 

formula of the deflection according to Boussinesq (Timoshenko 

and Goodier, (1951)) is 

= 
2 

TTEzq(t) 
d 

ln /-t-=---x/dt -
1 
TT 

+ \) 
E zq(t) 

2 
dt (4.1) 

Thus 

1cb/Z 
d

V (x) q(t) ln /-t--x/dt - J q(t) dt (4. 2) 

-\b/2 

The condition of equilibium is 

\b/2

J q(t) dt = p ( 4. 3) 

-\b/2 
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:q(t) 
____L_____--i,------1------"'-'----:-----'-----x,t 

xl \ r 
V X) 

Fig. 4.4a Contact pressure at the boundary of the 

single layer foundation 

0 
-- =---------------

y(x) 

q(x) 

Fig. 4.4b The coordinate system for the deflection 

of the beam 
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Therefore, Eq. (4. 2) may be transformed into 

v(x) = 1 
1rE 2 

;\b/2 

I q(t) ln (t 
d 2 

dtX) -
1 

1T 

+ Vz 
Ez 

. p (4. 4) 

-;\b/2 

from which the expression for the mid-section can be derived 

21 v = v(o) = q(t) ln ci) dt - . p ( 4. 5)
0 1rE2 J t 

-;\b/2 

Using the coordinate-system in Fig. 4.4.b the differential 
equation for the deflected beam can be written in the form 

X 

y" (x) + f q(t) · (x - t) dt] (4. 6) 

0 

where 

;\b/2 

M = J q(t) • t dt (4. 6') 

0 

Integrating twice and noting that the boundary conditions 
are 

y ( 0) = y' (0) = 0 

the beam deflection is obtained as 

X X X2 3 
1 [ x xy(x) = -- M- - P - + [ r q(t) (x-t) dt] (dx) 2] (4. 7)2 12E1 I J J1 

0 0 0 
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The condition of equal deflection of the beam and of the 

single-layer at each point within the interval -Ab/22x2Ab/2 

leads to the identity 

v - v(x) = y(x) (4.8)
0 

which is the fundamental equation for the derivation of the 

unknown function q(x). 

The function must be symmetrical, i.e. 

q(x) = q (- x) (4.9) 

The function q(x) can be expanded into a power series 

00 

q(x) = qm. (4.10) 

where 

(4.10) 

is the average pressure at the contact zone. The technique 

of expanding the contact pressure function into a power 
series has been used by De Beer and Lousberg (1964) and others. 

See section 2. 

The condition of equal deflection, Eq. (4.8), leads to an 

infinite system of linear equations of the av :s. In approxi­
mating this system one has to confine oneself to the expansion 

q • (4.11) 
m 

where n is finite. 
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The convergence, i.e. whether 

lim qn(x) = q(x) 

n + "' 

has not been studied analytically, due to the complexity of 

such a task. In this connection the solution is regarded as 

satisfactory if, at a reasonably large n, the solution is 

physically possible. This has been tested by varying the 

stiffness of the beam. A decrease of the stiffness must result 

in a decrease of the contact pressure at the beam ends. For 

this reason it was necessary to reject the expression 

q . 
m 

which proved not convergent. Using the contact pressure at 

the ends of the beam as criterion of convergence is reasonable. 
The contact pressure at the ends is 

If this expansion is to constitute the beginning of a convergent 
infinite series, then the following inequality must hold 

I q +1 c.::.4)- q c.::. >-b)I= q · lan+1l<sn L n 2 m 

when n> N(s) 

It is obvious that if 

"' 
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is convergent, the expansion 

is an approximate solution which is valid throughout the 
. I I A b .region x < , since2 

Ia·J I 

If it is assumed that the solution is devergent in the sence 
that 

lim an+l 'f 0 

n _.. °' 

the divergence can easily be detected because the solution 
fails in physical credibility. For instance, with increasing 
beam stiffness the solution must ultimately result in the 
well-known solution for infinite stiffness. In addition the 
solution must vary continuosly. Also the contact pressure at 
the beam ends must decrease to zero with decreasing beam 
stiffness, because the beam ends are lifted from the support 
when A< 1. The divergence can also be tested by varying the 
number of terms in the power series expansion. A considerable 
discrepancy between 

q (.::_ Ab) 
n 2 

and 

( + A b )
qn+l - 2 

clearly indicates divergence, if n is not too small. The 
following expansion has been used in the computations 
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q(x) = qm (4.12) 

The results are believed to be accurate enough for practical 
purposes. 

If Eqs. (4.4) and (4.5) are used, the following expression of 

the relative deflection of the single-layer with regard to the 
centre is obtained 

>.b/2 2 
v - v(x) = 1 q(t) ln (1 - ?S.) dt (4.13)0 11E 2 I t 

->.b/2 

Inserting Eq. (4.11) for q(t) and introducing the convenient 
symbol 

Zx 
I:; = >.b (4.14) 

the integration involved in Eq. (4.13) is performed as follows: 

>.b/2 0 

21 I 1 

2 IV - v(x) = q(t) ln (1 - ?S.) dt = q(t)0 11E {11Ez t 
->.b/2 ->.b/2 

0 \ b/2 
2 J J 2 

- I 

ln (t - x) d t - q(t) ln t 2 dt + q(t) ln (t - x) dt -

->.b/2 0 

>.b/2 

q(t) ln t 2 dt} = 11E
1 

2 
{Il - Iz + I3 - I4} (4.15) 

0 

>.b < t < 0
2 
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n z V V 
q(t) = qrn L (-l)v av (1cb 5 t 

v=o 

I 
0 

V 2 V V 2 
(-1) av (Ab) t J ln (t - x) dt = 

n 0 

2 V 

I= qm L ( -1) V av (Ib) tv ln (t - x)2 dt = 

v=o -1cb/2 

n 0 
V tv+l2 2 

= L (-l)v av ( 1c b) { I ln (t - x) -qm v+l 
v=o -1cb/2 

0 
tv+l 2I V +l t - X dt} = 

-1cb/2 
v+l n ( 1c b)

2 V 2 = L (-l)v a (Ib) {-(-l)v+l ln (A~ + x)z -qm V V + 1 
v=o 

0 V v+l
2 l v-i X( l: X t + dt} = v+l X) 

-1cb/Z i=o 
J t -

n a 
= p L (-l) v_v_ { (-1) V [ln 1c ~ + ln /1 +E;/] +

v+l 
v=o 

V i 
v+l-i E; + E;v+l .!.;}+ l: (-1) ln /1 +

v+l-i E; 
i=o 
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I 
0 n 

2 V V 
I 2: qm [ l: (-l)v av ( ;\ b) t J ln t 2 dt = 

-;\b/2 V=o 

n 0 
V 2 V 

tv= qm l: ( -1) av ( ;\b) I ln tz dt = 
V=o -;\b/2 

n 0 0 
2 V tv+l tv+l 

= qm l: (-l)v av (,_b) { ln t 2 - l.dt} =I IV + 1 V + 1 t 
V=o -;\b/2 -;\b/2 

n 
av ;\b= p l: [lnV+l 2- v!1J 

V=o 

b0 < t < 2 

n 
2 V V 

q(t) = q l: tm av c,.b) 
V=o 

;\b/2 n 
2 V V 

I3: qm [ l: av (,_b) t J ln (t - x)z dt =I 
0 V=o 

n ;\b/2
zV 

I tv= qm l: av c,.b) ln (t - x) 2 dt = 
v=o 0 

n ;\b/2 ;\b/2
2 V tv+l tv+l 

= qm l: av (Th) { I ln (t - x) 2 - I 2 dt} =v+l v+l t-x 
V=o 0 0 

n ;\b v+l ;\b/2 V 
z v Cz) 2 2 i v-1= qm l: av (Ib) { V + 1 ln c"~ - x) - v+l(l: X t +J 

v=o 0 i=o 

v+l 
+ X ) dt} = t-x 
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n a 
\! :\b 

V 
E;l v+l 1= p l: {ln + ln/1-E;- I l: -E; ln/i-1/}v+l 2 v+l-i 

v=o i=o 

:\b/2 n \! V n :>-b/2
2 zV 

f tvlnI4: f qm [ l: av ( :\b) t ]ln tz dt = qm l: a ( :\ b) t 2dt= 
\! 

0 v=o v=o 0 

n :\b/2 ,-b/2
\! tv+l tv+l2 2 2= qm l: av ( :\ b) { 

v+ 1 ln t -
\! 

dt} = + 1 tI J 
v=o 0 0 

n 
av 1= p l: [ln :\~ -

\! + 1 \! + l] 
v=o 

Thus, by adding the integrals according to Eq. (4 .15) 

n 

VO - v(x) = 
p 

l: av F ( E; '\! ) (4.16)'lTEz 
v=o 

where the symbol 

\! 

l: [(-l)i+l -1] E;i
v+l-i 

i=o 

Similarly, by inserting the power series expansion for the 

contact pressure, Eq. (4.11), into Eq. (4.7) and integration, 

the function y(x) can be obtained in terms of the coefficients 

a. and the variable E;, Eq. (4.14)
J 

n 
~ 2

y(x) = [ l:(l + 2 cv+ ) av (4.17)v+Z /v+4 " 
v=o 
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For the derivation of Eq. (4.17) one has to consider the 

condition of equilibrium 

;\b/2

J q(t) dt = p (4.18) 

-;\b/2 

which leads to 

n 
av 

l: = 1 
\) + 1 

v=o 

It is also necessary to use the expression for M Eq. (4.6') 

which may be transformed into 

M = P:\b-4- (4.19) 

Introducing the relative stiffness symbol 

b 3 
B = -t ) (4.20) 

the condition of equal deflections Eq. (4.8) can now be 

written as 

n 
l: { 311 B 

8 
[-1-
v+2 (4.21) 

v=o 

the symbols F (i;,v) and B defined in Eqs. (4.16') and (4.20). 

For n = 11, Eq. (4.12), there are twelve unknown coefficients 

aj (j = 0, 1, ... , 11). The use of the compatibility equation, 
Eq. (4.21), at ten points, i; = 0.1, 0.2, ... , 1.0, results in 

ten equations. To these must be added the condition of equilibrium, 

Eq. (4.18). Furthermore, due to symmetry q' (0) = 0 

which leads to a twelfth equation 

a = 0 (4.22) 
1 
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The resulting system can be solved conveniently with an 

electronic computer. 

The calculated distribution of the contact pressure q(x) 

is shown in Fig, 4.5 for different values of the relative 
stiffness B, Eq. (4.20). The first distribution shown in 

Fig. 4.5 is the well-known solution for B = 0. However, of 

special interest is the case 

+ ).b 
q c- z) = o 

which marks the transition to the region characterized by 
the lifting of the beam ends, i.e. A< 1. 

After the coefficients a , ••• , an have been evaluated, one 
0 

can calculate the bending moment Mat the mid-section from 

Eq. (4.19), and the vertical deflection v at that same 
0 

section from Eq. (4.5). This equation can be transformed into 

n=ll 
P 2d 

+ i:: (4. 23)Vo = TIE2 {2 (ln Ab 
v=o 

The results are shown in Fig. 4.6. As seen, A does not appear 

explicitly in the functions plotted on the vertical axis. 

If these results are compared with those from the traditional 

Winkler-model it is interesting to notice that 

M
(Pb) = 0.15915 

max (B=O) 

while 

M(Pb) = 0.12500 
max Winkler 

If the bending moments M for the two models should be the same, 

then 
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k = 34.0 - 4.28) (4. 24) 

is valid throughout the interval 

4.28 < B < 14.95 (4.24') 

Economic Design 

(Minimum volume of plate) 

The width b of a strip is often chosen for other reasons 

than those of statics. It is interesting, therefore, to 

investigate whether it is possible to determine an optimum 

plate thickness, so as to minimize the volume of the plate, 

given permissable stresses and deflections. 

The maximum stress, a, at the mid-section of the plate (cal­

culated according to Navier's formula) is taken in the 

following as the criterion of the economic design. This 

stress can be calculated from the equation 

a = 
6M _ 6Pb . f...C.B (4. 25)~- t2 

where 

M/Pb = C(B) 

can be found in Fig. 4. 6. 

Maximize a as the function of t in Eq. (4. 25) at a constant 

value of b, then 

do 6 Pb . 3BC' (B) + 2C (B) I = O= (4.26)dt t3 
B = B 

0 
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Eq. (4. 26) yields 

B = 14.122 (4.27) 
0 

This solution leads to 

E 1/3 
to = 0.4137 b (~) (4.28) 

El 

and 

E -2/3p 
(J = 3.160 b (~) (4.29) 

max El 

Taking B = B 1n Eq. (4, 27)
0 

2 
Vo+ v2 - ln C%) = 3.215 (4.30) 

b = 1. 762 (4.31)q(x)max p 

The stress o, Eq, (4.25), will decrease at a fixed value of b, 

if the thickness t is taken to be larger or less than t 0 , 

B = 14.122 is very close to B = 14,946, the boundary of the 
0 

region for Bin which part of the beam is not in contact with 

the foundation, A< 1. To use this region in design is always 

uneconomic. Increasing B from B is therefore of little value. 
0 

This means that for practical reasons one can confine oneself 

to a thickness t larger than or equal tot , i.e.
0 

t > 0.414 (4.32) 
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The lower limit of t from Eq. (4.32) is connected with the 

values of omax' v and q(x) from Eqs. (4.29), (4.30) and
0 max 

(4.31). 

Example: 

= 40 ton/m = 400 kp/cm 
= 10 m 

= 170.000 kp/cm 2 

= 1000 kp/cm 2 

= 0.150 

= 70 kp/cm 2 

= 1 cm 

q(x)max = 3 kp/cm 2 

E1 1/3 1/3 
(-) = (17 0) = 5.5397
E2 

Try B = 10 

Largest_contact_2ressure 

q(x)max · Pb 
= 1.568 

·.· b ~ 1.568; 400 = 209 cm 

Largest_deflection 

2 3 142 10001n C%) < · 4~0 . 1 + 0.150 - 2.987 = 5.018 
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b > e-2.509 
1000 -

b > 82 cm 

Largest_stress 

Take b = 210 cm 

1 1 210 
t = 210 · = = 17.6 cm5.5397 11.935p 

6 • Pb · 0,100660 = ~6_·_4~0~0"----·--=-21~0::.,,....·_::0~.~1~0~0~6~6~0 = 163.8 kp/cm2a = 
(17.6) 2 (17.6) 2 

> a p 

Try B = 6 

Largest_contact_2ressure 

q(x) · Q = 3.195 max p 

b > 3.195 400 = cm426
3 

Largest_deflection 

The necessary bis decreasing from the previous case, B = 10. 

Largest_stress 

Take b = 426 cm 

1 1 426
t = 426 = 42 35.5397 = 10.066 · cmr 

6 Pb· 0.115866 = ~6_·_4~0~0'--_4_2_6~·-0_.~1~1~5~8_6_6 = 66.2 kp/cm 2 
a = 

(42,3) 2 (42.3) 2 

< a p 
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Appendix I. Notation 

The following symbols are used in this paper: 

A, B, C, D, E = points along the beam in De Beer model 
A = constant 

ao ... an = polynomial coefficients 
B = constant 
B = width of beam in Ve sic-s expression, Eq. (3. 2) 

b 3 
B (t) , relative stiffness symbol 

= 14.122 

= length of beam 

= constant 

= pt, relative bending moment symbol 

= depth of single layer foundation 

= Young's modulus of elasticity 

= flexural rigidity of beam 

= flexural rigidity of beam in Vesic's expression, 
Eq. (3.2) 

= Young's modulus of elasticity for subgrade 
material 

F Cs,v) = function symbol defined in Eq. (4.16) 

Il, Iz, I3, I4 = integrals 
k = spring constant 
k = modulus of subgrade reaction for square plate 
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M 

N 

N(E) 

n 
0 
p 

P (x) 

p 

q (x) 

qm 
qn (x) 

s 
t 

t 

to 
V (X) 

y(x) 
y 

a 

y 

\) 

0 

0 

= bending moment at centre of beam 

= single load 

= real positive number 

= degree of polynomial 
= point at foundation boundary 

= concentrated load 

= applied load on beam 

= pressure per unit area 
= contact pressure under beam 

= average pressure under beam 

= approximation with an n:th degree 
polynomial of q(x) 

= string constant 

= integration variable 
= thickness of beam 
= 0.4137 b (E 2/E 1) 1/ 3 

= deflection function for foundation 

= total deflection at the centre of beam 

= length coordinate along the beam 

= deflection of beam 
= deflection of subgrade in an Archimedes; 

model 

= constant of lateral confinement 

= density of an ideal liquid 

= real positive number 
= length of contact pressure zone= \b 
= Poisson;s ratio; also used as summation 

symbol 
= Poisson;s ratio for subgrade material 

2x 
= ID 
= surface tension 
= maximum stress at mid-section 
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ningar. B. Broms 

2. Teknisk-ekonomlsk 0versikt Over anl8.ggningsmetoder 
for reducering av sattningar i v8.gar. A. Ekstrom 

3. sattning av verkstadsbyggnad i Stenungsund uppf5rd 
pa normalkonsoliderad lera. B. Broms & 0. Orr/a 

27. B8.rf6rmAga hos sI8.ntberg vld statisk belastning av 1968 15:-
bergspets. Resultat frAn modellf6rs6k. S-E. Rehnman 



No. 

28. Bidrag till Nordiska GeoteknikermOtet i GOteborg den 
5-7 september 1968. 

1968 

Pris kr. 
(Sw. crs.) 
15:-

1. Nordiskt geotekniskt samarbete och nordiska geotek­
nikermOten. N. Flodin 

2. Nli.gra resultat av belastningsfOrsOk 
speciellt med avseende pA sekundiir 
G. Lindskog 

pa lerterrang 
konsolldering. 

3. Siittningar vid grundl8.ggning med platter pll mora.n­
lera i Lund. S. Hansbo, H. Bennermark & U. Kihlblom 

4. StabilitetsfOrbiittrande spontkonstruktion 
ningar. 0. Wager 

fOr bankfyll­

5. Grundvattenproblem I Stockholms city. 
G. Lindskog & U. Bergdahl 

6. Aktuell svensk geoteknisk forskning. B. Broms 

29. Classification of Soils with Reference to Compaction. 
B. Broms & L. Forssblad 

1968 5:-

30. Flygbildstolkning som hjiilpmedel vid oversiktliga 
grundundersOkningar. 

1969 10:-

1. Flygbildstolkning f5r jordartsbest8.mning vid samh§lls­
planering 1-2. U. Kihlblom, L. Viberg & A. Heiner 

2. ldentifiering av berg och bedOmnlng av jorddjup med 
hjiilp av flygbilder. U. Kihlbfom 

31. Nordisk! sonderingsmote I Stockholm den 5-6 oktober 1967. 
F6redrag och diskussioner. 

1969 30:-

32. Contributions to the 3rd Budapest Conference on Soil 
Mechanics and Foundation Engineering, Budapest 1968. 

1969 10:-

1. Swedish Tie-Back Systems for Sheet Pile Walls. 
B. Broms 

2. Stability of Cohesive Soils behind Vertical Openings 
In Sheet Pile Walls. Analysis of a Recent Failure. 
B. Broms & H. Bennermark 

33. Seismikdag 1969. Symposium anordnat av Svenska Geotek-
niska Foreningen den 22 aprll 1969. 

1970 20: -

34. NAgot om geotekniken I Sverige samt dess roll I plane-
rings- och byggprocessen. Nfl.gra debattinl8gg och allm8.nna 
artiklar. 

1970 15: -

T. Kallstenius 
1. Geoteknikern i det specialiserade samh8IIet. 
B. Broms 
2. Diskussionsinlfigg vld konferens am geovetenskaperna, 

7 mars 1969. 
3. Geoteknlk I Sverlge 

denser. 
- utveckling och utvecklingsten­

4. Geoteknlska undersOkningar och grundl8ggningsmeto­
der. 

5. Grundliiggnlng pA plattor - en allmiin oversikt. 

35. Piles - a New Force Gauge, and Bearing Capacity Calcu-
lations. 

1970 10: -

1. New Pile Force Gauge for Accurate Measurements of 
Pile Behavior during and Following Driving. 
B. Fellenius & Th. Haagen 

2. Methods of Calculating the 
city of Piles. A Summary. 
B. Brems 

Ultimate Bearing Capa­

36. PAlslagning. Materia/egenskaper hos berg och betong. 1970 10:-
1. Bergets bfirf6rmAga vid punktbelastning. 

S.-E. Rehnman 

2. Deformationsegenskaper hos stagna betongpAlar. 
B. Fel/enius & T. Eriksson 

37. Jordtryck mat grundmurar. 1970 10:-

1. Jordtryck mat grundmurar av Lecablock. 
S.-E. Rehnman & B. Broms 

2. Berfikning av jordtryck mat kallarv8.ggar. 
B. Broms 

38. Provtagningsdag 1969. Symposium anordnat 
Geotekniska F6reningen den 28 oktober 1969. 

av Svenska 1970 25: -



No. Pris kr. 
(Sw. crs.) 

39. Moriindag 1969. Symposium anordnat av Svenska 1970 25:-
Geotekniska Foreningen den 3 december 1969. 

40. Stability and Strengthening of Rock Tunnels in Scandinavia. 1971 25:-
1. Correlation of Seismic Refraction Velocities and Rock 

Support Requirements in Swedish Tunnels. 0. S. Cecil 
2. Problems with Swelling Clays in Norwegian Under­

ground Constructions in Hard-Rocks. R. Selmer-Olsen 

41. Stalpalars barformaga. Resultat av faltforsok med latta 1971 30:-
slagdon. G. Fjelkner 

42. Contributions to the Seventh International Conference on 1971 15: -
Soil Mechanics and Foundation Engineering, Mexico 1969. 

43. Centrically Loaded Infinite Strip on a Single-Layer Elastic 1972 20:-
Foundation - Solution in Closed Form According to the 
Boussinesq Theory. 8-G. Heifers & 0. Orrje 




